

COMET BOWEI	L 1980b, fr	om elemen	its on IA	U Circula	ar 3670.
R A (195	0) Decl.	Delta	r	Elong.	m _q
17h 42m68	-22°11'0				9.7
		3.300	3.30.	0.07	
		3 0/8	3 369	100 1	9.6
		3.040	3.307	100.1	
		2 012	3 386	116 7	9.4
		2.012	3.300	110.7	7.4
		0 604	2 412	12/ 0	9.3
		2.024	3.413	134.5	9.3
		0 507	2 / 50	156 6	0.2
		2.507	3.450	154.6	9.3
				175.0	0.0
		2.484	3.498	1/5.3	9.3
					٥. ٣
		2.567	3.555	163.8	9.5
17 59.43	-22 53.5	2.751	3.621	143.8	9.7
mets by Rada gnitude Sourcel W. E. Gree of Comets a McCrosky a 1982 Americal Designation Editor, by Proposed Pro INTERNATION f Comet Obse Comet" 1946 Wilson-Harr n 1953 I, M Vozarova 1957 77 XIV, Brad proposed Pro Vozarova 1957 Vozarova 1957 Schaumasse ttle 1980 X	ces for Viscen and Charact Agassiz Sand CY. She can Workshop ons of Comet Jonathan Sobe to Halle AL COMET QUE TO SAI, Comets ington 1952 rkos 1953 II SA VIII, Abedfield 1979 Giacobini-KrII, P/Borrel VI, P/Wolfield, P/Schwall, P/S	Kamoun ual Comet les S. Mo tation Du ao on Comet s hanklin y's Comet ARTERLY: Minkowsk I, Mrkos Mrkos-H 11 1954 X X, Bradfi esák 1951 ly 1980i, Harringt Kearns-Kw	ary Photorris ring 198 ary Astro , by Sco Volume ii 1951 I 1952 V, Ionda 195 K, Kresák Leld 1980 IV, P/T P/Kopff con 1952 wee 1981h achmann 1	ometry. 1, onomy tt Mize 3 (1981). , Pajduša Peltier 1 3 III, Pa -Peltier XV, P/Er empel 1 1 1951 VII II, P/Swi , P/Pons- , P/Steph	1.,
	R. A. (195) 17 42 68 17 53.03 18 01.91 18 09.16 18 14.62 18 18.18 18 19.84 18 19.66 18 17.87 18 14.83 18 11.04 18 07.06 18 03.48 18 00.81 17 59.43 *********** mets by Rada gnitude Source W. E. Gree of Comets at 1982 Americal W. E. Gree of Comets at 1982 Americal Designation of Comet Proposed Propo	R. A. (1950) Dec1. 17 42 68 -22 11.0 17 53.03 -22 14.1 18 01.91 -22 14.8 18 09.16 -22 14.3 18 14.62 -22 13.4 18 18.18 -22 13.1 18 19.84 -22 14.0 18 19.66 -22 16.4 18 17.87 -22 20.2 18 14.83 -22 25.1 18 11.04 -22 30.7 18 07.06 -22 36.5 18 03.48 -22 42.4 18 00.81 -22 48.0 17 59.43 -22 53.5 **********************************	R. A. (1950) Decl. Delta 17 42 68 -22° 11.0 3.308 17 53.03 -22 14.1 18 01.91 -22 14.8 3.048 18 09.16 -22 14.3 18 14.62 -22 13.4 2.812 18 18.18 -22 13.1 18 19.84 -22 14.0 2.624 18 19.66 -22 16.4 18 17.87 -22 20.2 2.507 18 14.83 -22 25.1 18 11.04 -22 30.7 2.484 18 07.06 -22 36.5 18 03.48 -22 42.4 2.567 18 00.81 -22 48.0 17 59.43 -22 53.5 2.751 ***********************************	R. A. (1950) Decl. Delta r 17, 42,68 -22,11.0 3.308 3.364 17, 53.03 -22,14.1 18, 01.91 -22,14.8 3.048 3.369 18, 09.16 -22,14.3 18, 14.62 -22,13.4 2.812 3.386 18, 18, 18 -22,13.1 18, 19.84 -22,14.0 2.624 3.413 18, 19.66 -22,16.4 18, 17.87 -22,20.2 2.507 3.450 18, 14.83 -22,25.1 18, 11.04 -22,30.7 2.484 3.498 18, 07.06 -22,36.5 18, 03.48 -22,42.4 2.567 3.555 18, 03.48 -22,42.4 2.567 3.555 18, 03.48 -22,53.5 2.751 3.621 ***********************************	17 42.68 -22 11.0 3.308 3.364 84.7 17 53.03 -22 14.1 18 01.91 -22 14.8 3.048 3.369 100.1 18 09.16 -22 14.3 18 14.62 -22 13.4 2.812 3.386 116.7 18 18.18 -22 13.1 18 19.84 -22 14.0 2.624 3.413 134.9 18 19.66 -22 16.4 18 17.87 -22 20.2 2.507 3.450 154.6 18 14.83 -22 25.1 18 11.04 -22 30.7 2.484 3.498 175.3 18 07.06 -22 36.5 18 03.48 -22 42.4 2.567 3.555 163.8 18 00.81 -22 48.0 17 59.43 -22 53.5 2.751 3.621 143.8 ***********************************

THE INTERNATIONAL COMET QUARTERLY (ICQ) is a non-profit journal devoted to news and observation of comets. Issues are published 4 times per year (January, April, July, and October). The ICQ is published by the Department of Physics and Astronomy at Appalachian State University and is mailed from Boone, North Carolina, U.S.A.

The regular (invoiced) subscription rate is US\$10.00 per year. Subscribers who do not wish to be billed may subscribe at the special rate of US\$6.00/year, although such subscribers are NOT entitled to back issues lost by not renewing promptly. For special subscribers, the last set of digits (after the second hyphen) on the top line of the mailing address

label gives the Whole Number that signifies the last ICQ issue which will be sent under the current subscription status. Make checks or money orders payable in U.S. funds to THE INTERNATIONAL COMET QUARTERLY and send to D. Green; Smithsonian Observatory; 60 Garden St.; Cambridge, MA 02138, U.S.A. Group subscription rates and advertising rates are available upon request. Manuscripts will be reviewed for possible publication; send typed, double-spaced copy to the Editor.

All cometary observations should be sent to C. S. Morris; Prospect Hill Rd.; Harvard, MA 01451, U.S.A. Back issues are available from Dr. T. L. Rokoske, Dept. of Physics and Astronomy; A.S.U.; Boone, NC 28608, U.S.A.

ICQ EDITORIAL STAFF::

EDITORIAL ADVISORY BOARD::

Brian G. Marsden, Harvard-Smithsonian Center for Astrophysics David D. Meisel, State University College of New York

+++++++++

FROM THE EDITOR

Well, here it is: our largest issue yet! This 36-page issue "outlengths" the two 32-page issues of last year, and the volume of material seems to have no end in sight.

However, the larger issue-sizes are forcing us to again raise subscription prices (see page 4) to keep us above water with printing and postage costs. We trust that subscribers will continue their support of the ICQ through their contributions, and that any subscription increase will be seen as a reflection of the expansion and the improvement of the content in this journal.

Plans for the year 1982 include publishing photographs on a regular basis and a switch to glossy printing paper. The Editors are still discussing these matters with the printer at Appalachian State University.

We encourage all individuals from the Northeastern United States to attend the ICQ's 1982 American Workshop on Cometary Astronomy, to be held on May 1 in Smithfield, Rhode Island (see page 14 of this issue). Comet enthusiasts from South Africa, Italy, England, and France have already indicated planned-attendance, so the geographical distribution is guaranteed to be quite large among attendants.—Daniel Green, Cambridge, 19 Feb.

OBSERVING COMETS BY RADAR

by
Paul Kamoun
Massachusetts Institute of Technology

ABSTRACT. To date, only one comet, P/Encke, has been detected by radar; it is calculated that only two other known comets (both in 1982: P/Grigg-Skjellerup and P/Churyumov-Gerasimenko) are possible candidates for radar detection in the next five years. Detailed optical, astrometric observations for the improvement of orbital elements are necessary to aid in the radar observations; estimates of the rotations of their nuclei are required in order to properly interpret the radar results.

There are two classes of targets that can be studied by radar: the so-called "hard" objects (i.e., rigid, like planets and satellites), and the "soft" targets (i.e., having shapes that change with time, like plasmas or clouds of particles). Radar astronomical observations of rigid bodies in the solar system can yield information on their sizes, rotation vectors, surface scattering properties, and orbits. Studies of targets in the second group, where possible, permit one to estimate electron densities or, in ideal cases, particle densities.

The study of the moon in 1946 was the first achievement of radar astronomy. Since then, ground-based radar systems have been used, mostly in the United States, to study the sun (a "soft" target), the inner planets, the Galilean satellites of Jupiter, Saturn's rings, and a dozen or so asteroids. It was not until 1980 that the first cometary nucleus, P/Encke, was detected by radar.

The radar detectability of a target depends not only on its size and scattering properties, but also on the inverse fourth power of its distance from the radar. Thus, even for the most sensitive radar facility presently available, the S-band (2380-MHz frequency, 12.6-cm wavelength) radar system at the Arecibo Observatory in Puerto Rico, a cometary nucleus (assumed here to be a rotating solid body about 1 km in radius) could be detect-

ed only at a geocentric distance of less than about 0.3 AU, the exact limit depending on the rotation rate and radar albedo. Since comets having earth-crossing orbits are few and small, opportunities for radar observations are rare. In particular, for the next five years, only the appearances of P/Grigg-Skjellerup and P/Churyumov-Gerasimenko should be favorable, both occurring in 1982. The chance of detecting Halley's Comet in 1985-86 is slim.

It can be shown that the detection by radar of the plasma or of the dust component in the coma and tail is virtually impossible (Kamoun et al. 1982a), mostly because of the low critical plasma frequency and the low density and small particle size of the ice and dust grains. However, the transparency of the coma allows radar waves to probe directly the surface of the nucleus. This penetrating capacity gives radar a unique advantage over optical astronomical techniques, as in the latter, it is practically impossible to separate the light reflected by the nucleus from that scattered by the coma.

The radar detection of the nucleus of P/Encke provided the first direct evidence for the existence of a solid nucleus. From the echo power received from the target, it is possible to compute its radar cross-section, and, if the radius is known, to estimate its radar albado. If the

OBSERVING COMETS BY RADAR

Doppler frequency bandwidth of the signal can be measured, the radius of the nucleus in meters, R, is calculated from the radar results as

$$R = \frac{\lambda BT}{8\pi \sin \theta}, \qquad (1)$$

where λ is the wavelength in meters of the transmitted signal, B is the total bandwidth in Hertz of the radar echo caused by the rotation of the nucleus, T is the spin period in seconds of the nucleus, and θ is the angle in radians between the comet's rotation axis and the radar line of sight. Using the bandwidth seen in the 1980 radar observations, combined with the rotation vector estimated by Whipple and Sekanina (1979), P/Encke's radius was found to fall in the range 0.5-3.8 km. For a discussion of the errors, see Kamoun et al. (1982b).

As can be seen in equation (1), it is necessary to have an accurate estimate of the nucleus' spin period and pole direction in order to deduce a significant value of the radius from radar observations. The spin vector can be found by the method of Whipple

and Sekanina, if several precise optical observations are available. For this purpose, accurate descriptions and photographs of the visual aspects of the head are needed. Here the role of comet observers, professional and amateur, is crucial (Whipple 1981). Numerous accurate astrometric observations are important to establish the ephemerides of the comet, since for a radar observation, one needs to know precisely not only the angular position of the object, but also its velocity, in order to correct the receiver frequency for the Doppler shift introduced by the radial component of the velocity of the target relative to the earth. Such determinations, before, during, and after the actual radar observations, are especially crucial for newly-discovered comets or for comets having few past appearances, although they were also quite important for radar detection of P/Encke, a comet otherwise known for having well-determined orbital elements. In particular, the usefulness of such visual "patrols" during the passage of comets P/Grigg-Skjellerup and P/Churyumov-Gerasimenko should be emphasized.

REFERENCES

Kamoun, P. G.; G. H. Pettengill; and I. I. Shapiro (1982a). in <u>Comets</u> (Univ. of Arizona Press).

Kamoun, P. G.; D. B. Campbell; S. J. Ostro; G. H. Pettengill; and I. I. Shapiro (1982b). submitted to <u>Science</u>.

Whipple, F. L. (1981). Modern Observational Techniques for Comets (JPL Publ. 81-68), pp. 191-201.

Whipple, F. L.; and Z. Sekanina (1979). Astron. J. 84, 1894-1909.

NOTICE OF SUBSCRIPTION INCREASE

DUE TO THE INCREASING NUMBER OF PAGES PUBLISHED EACH ISSUE, AND TO THE SUBSEQUENT INCREASE IN PRINTING AND POSTAGE COSTS, THE REGULAR SLB-SCRIPTION RATE WILL BE INCREASED TO \$14.00 PER YEAR, EFFECTIVE MAY 1, 1982. AT THE SAME TIME, THE SPECIAL RATE WILL BE INCREASED TO \$8.00 PER YEAR. Equivalently, this breaks down to \$3.50 and \$2.00 per issue, respectively, and it will not help to send subscription monies before May 1 at the old rates, because all subscribers in their respective categories will pay the same amount for each issue (compliments of our computer accounting program).

Daniel W. E. Green Harvard-Smithsonian Center for Astrophysics

and

Charles S. Morris
Prospect Hill Observatory, Harvard, Massachusetts

ABSTRACT. This first paper in a series begins the discussion of sources of visual and photoelectric-V magnitudes for use in visual cometary photometry. This paper discusses the following references: AAVSO Atlas and charts; Arizona-Tonantzintla Catalogue; U.S.N.O. Photoelectric Catalogue; Yale Catalogue of Bright Stars; Harvard Photometry; Revised Harvard Photometry; S.A.O. Catalog; and the Atlas of the Heavens Catalogue 1950.O.

I. Introduction

As part of the effort to improve the accuracy of cometary brightness estimates (cf. Green and Morris 1981), we have evaluated sources of stellar visual my and photoelectric V magnitudes. In this series of papers, we present recommendations for acceptable primary and secondary sources of comparison star magnitudes. The advantages and drawbacks of each reference are cited. Unacceptable sources are also discussed.

Sources of visual or V magnitudes are so numerous that it is not possible to address them all in a single paper. Thus, the most frequently reported and most important comparison star references are discussed in this first paper of the series. Subsequent papers will extend the evaluation to other stellar magnitude sources.

This series of papers deals specifically with stellar magnitudes. Because comets are extended objects, some observers, particularly those who are inexperienced, believe that comets should be compared with nebulae. Unfortunately, this is difficult in practice. Nebulae rarely match comets in size or morphology and often are placed poorly relative to the comet. Most importantly, visual magnitudes of nebulae quoted in the literature are often inaccurate, typically faint.

For fainter nebulae, magnitudes can be up to one or two magnitudes faint.

Nebulae simply do not make good comparison objects. Comet magnitude estimates based on comparison with nebulae are not acceptable to the ICQ.

As for stellar magnitudes, only those references which quote magnitudes to at least a tenth of a magnitude are considered in this series. Typical accuracy of comet magnitude estimates by experienced observers is ± 0.2 magnitudes. Thus, comparison star magnitudes given to a whole or half magnitude will not be sufficiently accurate. This means that atlases, which indicate star brightness to only half a magnitude, are not acceptable comparison star magnitude sources.

II. Visual Magnitude (m_v) and Photoelectric V

There have been numerous evaluations of systematic differences between m, and V magnitudes in the literature recently (e.g., Stanton 1981; Feijth 1980; Howarth 1979; Howarth and Bailey 1980; Stanton 1978; and Landis 1977). These studies have shown that the difference between m, and V is a function of a star's color, represented by the difference B-V, where B is the photoelectric B magnitude in the UBV system. The color index B-V is typically slightly negative for early

type and positive for late-type stars.
Stanton (1981) has found the empirical relationship given below for 260 stars listed in the Revised Harvard Photometry:

$$m_v = V + 0.182 (B - V) - 0.032 (1)$$

This result is valid for stars in the magnitude range $5.5 < m_{\nu} < 6.5$. Stanton suggests that for fainter stars (10 < $m_{\nu} <$ 11), the constant (-0.032) should be closer to -0.15.

Stanton's results are similar to the findings of other investigators. For the typical range of B-V, -0.2 < B-V < 1.5, the difference between m, and V could be as much as ± 0.2 magn.

In the past, observers have simply assumed $m_v = V$. Although work by Stanton and others show promise toward providing a more accurate relationship between the two quantities, it is not clear that such refinement is needed for comet work. By only selecting early-type comparison stars, $m_v = V$ to within about 0.1 magnitude without correction. For most situations this is sufficient accuracy for making comet magnitude estimates.

For the purpose of this evaluation of comparison star magnitude references, photoelectric V magnitudes are preferred over the visually or photovisually determined m_V magnitudes because, even without a color correction, V magnitudes are in most cases more accurate.

III. Summary of Findings

Several factors were weighed in our evaluation of the comparison star magnitude sources. These include:

- + method and accuracy of magnitude determination (i.e., photoelectric, photovisual, or visual)
- + range of my covered
- , + availability of source
 - + ease of use.

Based on these criteria, the references were placed in one of the following three groups:

- a) Recommended primary source -comparison star magnitudes from
 these references should be used
 whenever possible.
- b) Acceptable secondary source -only to be used if a primary source is not available.
- c) Unacceptable source -- should never be used. Comet magnitude estimates obtained using unacceptable sources will be considered approximate and under normal circumstances will not be published in the ICQ.

To further define the best references for comparison star magnitudes, the evaluation was made for these ranges of stellar brightness. These included: 1) m_v < 6.5; 2) 6.5 < m_v < 9.5; and 3) m_v < 9.5. The selection of these intervals corresponds to typical break-points in coverage of magnitude references.

Table 1 gives a summary of the ICQ evaluation of comparison star references.

4. Discussion of Individual Sources

To better understand how the recommendations for the various sources were obtained, a short discussion of each reference is given below.

AAVSO Atlas

The American Association of Variable Star Observers (AAVSO) Atlas is an excellent source of comparison star magnitudes. First published in 1980, this atlas is one of the few atlases which can actually be used for comparison stars, as individual stars have visual or V magnitudes written beside the drawn star images. Photoelectric V magnitudes were obtained primarily from the U.S.N.O. Photoelectric Catalogue (described below) for stars equal to or brighter than magnitude 6.5. Magnitudes of fainter stars are from AAVSO sequences (described below), supplemented by magnitudes from the Royal Astronomical Society of New Zealand charts for some southern vari-

ables. Although some comparison stars fainter than 10th magnitude are given, this atlas is typically useful down to magnitude 9.5. The AAVSO Atlas is available from Sky Publishing Corporation for \$50.

AAVSO Charts

The original standard AAVSO charts were based on visual photometry by Pickering of Harvard College Observatory, who used a variable-density wedge to determine comparison star magnitudes. In the early 1930's, the original Pickering charts were revised by the McCormick Observatory of the University of Virginia and, in turn, were approved by the Harvard College Observatory. These revised charts are still in use today.

For new stars added to the AAVSO observing program since the McCormick revisions, comparison star magnitudes are typically obtained from photovisual (yellow) plates. Star diameters are measured on the plate using an iris photometer. The diameters of stars with known magnitudes (e.g., photoelectric), either in the field or nearby, are correlated with their brightness. This establishes a zeropoint and slope which allows a comparison-star sequence to be determined from star diameters on the photovisual plate. A chart prepared in this manner is labeled "preliminary," since it is subject to revision. After the preliminary chart is initially checked by several experienced observers, it is provided to other observers. It may take from 5 to 10 or more years before a preliminary chart is finalized into a standard chart. During this period, the preliminary chart has been evaluated by numerous observers to ensure its accuracy.

Comparison star sequences derived from photovisual plates can be in error for a number of reasons. These include an incorrect zero-point determination, error in the magnitude-diameter slope, and a significant color difference in a star. The first two problems relate to the correlation

between photovisual star diameters and their magnitudes. If the zero-point of the sequence is incorrect, the comparison star magnitudes might all be off by a constant amount (e.g., 0.5 magnitude too bright or too faint). If the slope is incorrect, errors may show up at the extreme of the magnitude sequence. This is particularly true for faint comparison stars. Finally, if the color of a particular star is substantially different than that of other stars in the field, the correlation between diameter and magnitude may not hold. Thus, when seen with the eye, the star may look significantly brighter or fainter than the given, diameter-derived magnitude. Errors such as these are usually discovered while the variable star chart is considered preliminary.

In addition to the photovisual work, comparison star sequences of new variables in the AAVSO observing program are also being obtained photoe-lectrically, using the standard V band of the Johnson system and reducing this to the visual. This method is also used in obtaining magnitudes of faint comparison stars even in standard AAVSO charts.

How useful are AAVSO charts for comet work? Fainter than 7th magnitude, the AAVSO variable star charts (and Atlas) are probably the best source of comparison data readily available to the visual observer. For magnitudes fainter than about 9.5, this is particularly true. This does not mean that AAVSO charts are perfect -- they are not. Sometimes the zeropoint of two different comparison-star fields will differ, causing a "jump" or discontinuity as an observer switches from one field to the next. Care should be taken to intercompare the two fields, if possible, to minimize errors when switching from one comparison star field to another.

AAVSO charts are available from the AAVSO (187 Concord Ave., Cambridge MA 02138, U.S.A.) for \$0.25 per chart or \$0.20 per chart if more than 25 are purchased. A chart catalog is avail-

able for \$1.00.

The Arizona-Tonantzintla Catalogue
This catalogue was published in
Sky and Telescope in 1965 (Vol. 30,
No. 1). It consists of extensive information on 1,325 stars north of declination -50, most of which are
brighter than magnitude 5.0. Visual
magnitudes are given, to two decimal
places, as photoelectric V (Johnson
system). In all, five spectral regions are covered in the multicolor
photometry presented in the catalogue.

Stars are designated by both their Yale Bright Star Catalogue (BS) number and Greek-letter names or Flamsteed numbers. Thus, star identification is not a problem in most cases. However, some of the fainter stars with only a BS number might be difficult to identify because the coordinates are given only for epoch 1960.

The Arizona-Tonantzintla Catalogue is not comprehensive; this is its only major drawback. Reprints of this catalogue are available from Sky Publishing Corporation for \$1.95.

U.S.N.O. Photoelectric Catalogue In 1970 the U.S. Naval Observatory published a monumental work entitled "Photoelectric Catalogue: Magnitudes and Colors of Stars in the U,B,V and U ,B,V Systems" (Publ. U.S.N.O., 2nd Series, Vol. XXI), under the direction of V. M. Blanco, S. Demers, G. G. Douglass, and M. P. Fitzgerald. This 772-page singlevolume lists 20,705 stars with magnitudes obtained by the authors at Warner and Swasey Observatory and at the U.S.N.O. While this publication is one of the best photoelectric catalogues by virtue of the accuracy of its V magnitudes -- some of the included stars being fainter than 17th magnitude, and many fainter than 12th .-- it has major drawbacks for the visual observer. The Catalogue only covers scattered areas of the sky, and a photographic atlas is necessary to identify the fainter stars -- a factor which becomes more of a hindrence because the coordinates of stars are given for equinox 1900.0. Besides a U.S.N.O.-Catalogue numbering system, the brighter stars are also identified by H.D. (Henry Draper Catalogue), B.D. (Bonner Durchmusterung), C.D. (Cordoba Durchmusterung), and C.P. (Cape Photographic Durchmusterung) numbers, a helpful aid in locating a star if one or more of these other identifications are known from other sources.

Despite its drawbacks, the U.S.N. O. Catalogue is an excellent addition to the comet observer's collection of comparison star magnitude sources. However, this reference apparently is not readily available. Those wishing further information should contact the U.S.N.O. in Washington, D.C.

Yale Catalogue of Bright Stars

The Yale University Observatory
Bright Star Catalogue updates the Revised Harvard Photometry (RHP, discussed below) presented in the Harvard Annals (H.A.). Extensive information is provided on 9091 stars brighter than magnitude 6.5. The quoted visual magnitude is clearly indicated as either photoelectric V, the original visual photometry (RHP), or the RHP magnitude corrected to V.

Stars are designated by their BS number and Greek letter of Flamsteed number. Coordinates are given for both epochs 1900.0 and 2000.0.

The Yale Bright Star Catalogue is an excellent source of comparison star magnitudes. However, the observer should give preference to the stars with photoelectric V magnitudes. Currently this catalogue is out-of-print, but many libraries have this important reference.

Harvard Photometry

Among the first large-scale projects involving stellar photometry was a study published by Harvard College Observatory Director Pickering in 1884 in Harvard Annals (H.A.) 14. The work was called "Harvard Photometry" (still widely abbreviated as HP), and it involved the determination of magnitudes

for 4260 stars brighter than magnitude 6 in the declination range +90° to -30°. The coordinates are for equinox 1880.0, and precession is necessary to identify stars properly. Stars are also identified by HP, DM, BAC (Catalogue of British Assn., 1845), and Flamsteed numbers, and by Greek (Bayer) letters. The H.A. generally can be found only in large university or observatory libraries.

In 1890, Harvard College Observatory published magnitudes for 3,146 stars made with the meridian photometer, "an instrument provided with two object-glasses, mounted side-by-side in a fixed position, upon which the light of two stars near the meridian is thrown by means of reflecting prisms or mirrors, while the images thus formed are photometrically compared by polarizing apparatus" (cf. $\underline{\text{H.A.}}$ 24, 200). Stars are given by M.P. (Meridian Photometer) and DM number, with some stars fainter than magnitude 10, and the positions are given for equinox 1900.0.

Also in $\underline{\text{H.A.}}$ $\underline{24}$ is a "Photometric Revision of the Durchmusterung," listing stars down to magnitude 9.0 by DM number (equinox 1855.0).

Original Harvard Photometry is not readily available to the amateur. Because the magnitudes are of questionable accuracy, it is recommended that other sources be given higher priority.

Revised Harvard Photometry

In 1908 the Harvard College Observatory published a revision to the HP Catalogue, known as "Revised Harvard Photometry" (RHP, or occasionally, HR). Some 9,110 stars, mostly brighter than magnitude 6.5, comprised the RHP, all magnitudes being obtained by members of the Observatory observing visually with a prism-device attached to the 4-inch meridian photometer (see discussion above). RHP is located in H.A. 50, and the stars are listed for equinox 1900.0, with the constellation given along with the following star identification numbers:

Bayer, Laicaille, and Flamsteed; DM; HP; and AGC (Argentine General Cata-logue). While the original RHP Cata-logue is not readily available to most observers, this source has been used in more recent publications, such as Becvar's Atlas Coeli II (Atlas of the Heavens Catalogue 1950.0).

A Supplement to RHP, containing 36,682 stars — mostly fainter than magnitude 6.5 — was published the same year in H.A. 54. The photometry for these stars was obtained using the 4— and 2—inch meridian photometers, and stars are listed again for equinox 1900.0, although only the DM (and, where appropriate, CD and CP) numbers are given for identification purposes.

S.A.O. Catalog

The Star Catalog of the Smithsonian Astrophysical Observatory is probably the largest and best-known secondary collection of visual stellar magnitudes, and it has the added advantage of being still readily available for purchase by amateurs (the current cost is about \$50 for the 4volume set, and can be obtained from the U.S. Govt. Printing Office or, e. g., book dealers who advertise in Sky and Telescope). The SAO Catalog has many errors throughout, a major result from the copying of magnitude values from some one dozen original sources.

Drawbacks of using the SAO Catalog's visual magnitudes are widely known among experienced comet observers, and some of these problems have been discussed in recent papers (e.g., Herald 1981). Despite these problems, the observer can make good use of this publication by taking proper precautions. The Catalog is fairly detailed in its coverage down to magnitude 9, with many listings given for stars down to 10th magnitude. The positions are given for equinox 1950.0, giving the Catalog an advantage over many other sources because of its parallel to the majority of the star charts used by observers.

Atlas of the Heavens Catalogue 1950.0

The companion catalogue to the Atlas of the Heavens (Atlas Coeli) by A. Becvar, contains information on stars down to visual magnitude 6.25. The visual magnitude, given to two decimal places, is based on the RHP system. No additional information on the magnitudes is given in the catalogue. It appears that this catalogue

is not currently available, having been superceded by more recent catalogues. This catalogue is also known as the Skalnate-Pleso Catalogue.

We thank Mrs. J. A. Mattei, Director of the A.A.V.S.O., for her valuable discussion and comment regarding the AAVSO Atlas and charts for this paper.

TABLE 1. ICQ RECOMMENDATIONS FOR USE OF COMPARISON STAR REFERENCES.

	Ma	ignitude Range	e .
	Brighter than 6.5	6.5 - 9.5	Fainter than 9.5
REFERENCE			
AAVSO Atlas	P	P	U
AAVSO charts	S	P	P
Arizona-Tonantzintla	P	U	U
U.S.N.O. Catalogue	P	P	P
Yale Bright Star Cat.	P	U	U
Harvard Photometry	S	S	U
Revised Harv. Photomet	ry S	S	U
S.A.O. Catalog	S	S	U
Becvar's Atlas Coeli I	I S	U	U

KEY TO ABOVE TABLE: P = Primary source; S = Secondary; U = Unacceptable.

REFERENCES

Feijth, H. (1980). ICQ 2, 73.

Green, D. W. E.; and C. S. Morris (1981). ICQ 3, 67.

Herald, D. (1981). ICQ 3, 43.

Howarth, I. D. (1979). Journ. A.A.V.S.Q. 8, 26.

Howarth, I. D.; and J. Bailey (1980). Journ. Brit. Astron. Assn. 90, 265.

Landis, H. J. (1977). <u>Journ. A.A.V.S.O.</u> 6, 4.

Stanton, R. H. (1978). <u>Journ. A.A.V.S.O.</u> 7, 14.

Stanton, R. H. (1981). Journ. A.A.V.S.O. 10, 1.

OBSERVATIONS OF COMETS AT AGASSIZ STATION DURING 1981

R. E. McCrosky and C.-Y. Shao Harvard-Smithsonian Center for Astrophysics

Nearly 100 astrometric observations of 23 comets were made at Harvard Observatory's Agassiz Station (recently renamed Oak Ridge Observatory) during 1981. The program was supported by a NASA grant to the first author, and the research was carried out in close cooperation with the IAU Central Bureau for Astronomical Telegrams and the Minor Planet Center under the direction of B. G. Marsden.

The observing was done by the authors and G. Schwartz. Exposures were taken with the 1.5-m reflector on Kodak IIIa-F plates hyper-sensitized

OBSERVATIONS OF COMETS AT AGASSIZ STATION DURING 1981

with forming gas of 20% hydrogen. Usually, emphasis is given to faint objects and to those for which critical observations are needed.

The accompanying table lists the comets observed, the dates of observations, and the magnitudes from approximate estimates. Accurately measured and reduced positions have been published in the Minor Planet Circulars and the IAU Circulars. Some results of special interest are briefly mentioned below.

P/Comet Lovas 1980 V = 1980s

Discovered by M. Lovas on Dec. 5, 1980, and independently discovered by C. Kowal 10 days later, the orbit of this comet remained uncertain for a long time because of the lack of adequate information. The Agassiz observations from Jan. to April were vital in the establishment of its orbit. Our last plate was taken on Apr. 3, when the comet appeared as a weak image of $m_2 \sim 19.5$. It was not found on a 40-min exposure one month later.

Comet Bradfield 1980 XV = 1980t

Comet Bradfield was rapidly fading and receding from the sun after passing perihelion on Dec. 29, 1980. It was also reported to have split into multiple condensations after an outburst in mid-January (IAUC 3564 and 3569). Our first attempt was a 20-min exposure on June 28, but we failed to record its image. Subsequent longer exposures showed the comet as a small, condensed object as faint as magn. 18.5. When last observed on Aug. 27 on a 46-min exposure, it was fainter than 20th magn. at a heliocentric distance of over 4 AU. Thus, the Agassiz observations extended the observation arc by 6 months from the last position reported by other observers.

P/Slaughter-Burnham 1981i

Two exposures, one each on July 9 and 10, were attempted to recover this comet, but the suspected images were too weak to be certain. A third plate of 40-min duration, taken on July 28, revealed the comet as a somewhat diffuse object with condensation, at m, ~ 19.5 (IAUC 3621). The last exposure led to a positive identification of the candidates found on the two earlier plates when the comet was no brighter than magn. 20 at plate limit. Eight observations were obtained from July to December.

P/Swift-Gehrels 1981j

This comet was recovered on three exposures taken on successive nights, July 31 and Aug. 1 and 2 (IAUC 3622). It was of stellar appearance at magn. 18.5, somewhat fainter than predicted. A weak image of the comet (m. 19.5) on a plate exposed under rather bright sky conditions three weeks earlier was identified only after its recovery. This is the first appearance of P/Swift-Gehrels since the second discoverer's accidental rediscovery of comet Swift in 1973. Nine observations were secured from July to Dec.

P/Schwassmann-Wachmann 1

This comet seemed unusually active during the 1980-81 observing season (Shao 1981). A series of photographs in February documented the development of a spiral coma during a spectacular outburst (Sky Tel. 1981).

Other periodic comets we have tried to recover, but for which we were unsuccessful, are Swift-Tuttle, Gale, and Gehrels 3.

REFERENCES

Shao, C.-Y. (1981). <u>ICQ</u> 3, 76. <u>Sky and Telescope</u> (1981), 61, 390.

TABLE I, on the next page, lists the dates of exposure for plates that were taken at Harvard College Observatory's Agassiz Station in 1981 of comets. Rough magnitude estimates, and occasionally descriptive notes, are often provided.

TABLE 1. PHOTOGRAPHIC COMET OBSERVATIONS MADE AT AGASSIZ IN 1981

Name and Designation	Date		m ₁	m _a	Notes
P/Schwassmann-Wachmann 1	Jan.	6	17		
	Feb.	1		18-19	•
		10	13	15	Outburst
	:	13			
·	:	28		17.5	
	Mar.	28			
	Apr. 2	23	11		Outburst
	May	3			Coma
	-	8	<15	17.5	Coma
P/Smirnova-Chernykh 1975 VII = 1975e	Nov.	2			
	2	25		18.5	
		26			
	2	29		•	
	Dec. 3	30			
P/Gunn	Jan.	6		18.5	
	Feb.	4			
P/Reinmuth 1 1980 VIII = 1979j	Mar.	2			
•	Apr.	8	18		Diffuse
P/Schwassmann-Wachmann 2 1979k		1			
	Feb. 2	28			
Bowell 1980b	Feb. 1	.0			
	Mar. 2	28	15		
	Apr.	3			
		23	15		
	June	6			
P/Brooks 2 1980 IX = 1980f	Jan. 3	31			
•	Mar.	2		>19	Very weak
P/Stephan-Oterma 1980 X = 1980g	Jan. 11	Į			,
	Mar.	2		15.5	Sharp condens.
	Apr.	4			•
P/Borrelly 1980i	-		<14		Strong condens.
P/Kohoutek 1980j		1		>19	
P/Reinmuth 2 1980n			18.5		
		0	• •		
Meier 1980 XII = 1980q		.0			
· L	-	3			
P/Lovas 1980 V = 1980s	Jan.		17.5		
			17.5		
		6			
		8.			
	Apr.	3		19.5	
Bradfield 1980 XV = 1980t	-	9		18.5	
		7			
		8		19.5	
		27		>20	
P/Longmore 1981a	Feb.	6		18.5	Diffuse/condens.
	June	6		18	Weak tail
P/Bus 1981b		4			Near plate edge
•		1			,
·		:3			
		4		17.5	
		6			
		7			

TABLE I. PHOTOGRAPHIC COMET OBSERVATIONS MADE AT AGASSIZ IN 1981

	Date	m (^m 2	Notes
Bus 1981d	May 3			
	8	16		Well-condensed
	27			Poor sky
	June 24			-
P/Gehrels 2 1981f	Aug. 1		19.5	Stellar
	27			
	Sept. 25	17.5		Condensed .
	0ct. 31	17		
	Nov. 23			
	Dec. 20			
P/Kearns-Kwee 1981h	31			
r/kearns-kwee 1901n	Aug. 1		18	0. 11
	29			Stellar
	Sept. 25		16 5	0. 11
	0ct. 31 Nov. 25	1.6	16.5	Stellar
		16	17	Faint tail
P/Slaughter-Burnham 1981i	Dec. 30	>20		·
1701adgittel Balimam 19011	July 9 10	>20		D
	28	19.5		Recovery
	Aug. 26	19.0		4
	Sept. 25			
•	0ct. 31	17.5		
	Nov. 23	18		
	Dec. 20	10		
P/Swift-Gehrels 1981j	July 11		19.5	Pre-recovery
· J	31		17.5	ile lecovery
	Aug. 1		18.5	Recovery
	2			necovery
	26		18	
	Sept. 25			Diffuse/condens.
	Nov. 2			
	23	15		
	Dec. 19			
P/Howell 1981k	Sept. 5			
	7			
	29			
	Nov. 2			
	23			
D/771 : 4-9 1 1001	Dec. 21			
P/Väisälä 1 19811	Dec. 31	20		

UNIVERSAL TIME (UT): This time based on the Greenwich meridian is used throughout the ICQ; it is 24-hour time, from midnight to midnight. In North America, add the following numbers to standard times to convert to UT: EST, 5; CST, 6; MST, 7; PST, 8. For daylight savings time, add 4, 5, 6, and 7 hours, respectively.

ICO SPONSORS 1982 AMERICAN WORKSHOP ON COMETARY ASTRONOMY

The International Comet Quarterly will sponsor the 1982 American Workshop on Cometary Astronomy, to be held on May 1, 1982, at Bryant College in Smithfield, Rhode Island. This workshop, the first of its kind in the United States, will provide a forum for professional and amateur astronomers to discuss topics of mutual interest in cometary astronomy.

Featured speakers at the workshop will be Dr. Fred L. Whipple, Dr. Brian G. Marsden, Dr. Michael F. A'Hearn, Stephan Edberg, John E. Bortle, and Charles S. Morris. Subjects to be covered include visual comet observing techniques, astrometric observations, comet filters for photoelectric work, and the International Halley Watch. Participants in the workshop will have the opportunity not only to listen to and ask questions of the featured speakers, but to talk informally with

them on subjects of specific interest.

The cost of the workshop is \$15,
which includes lunch. An optional
dinner will cost \$8. At press time,

dinner will cost \$8. At press time the tentative schedule of the workshop has a beginning at 10 a.m. (9 a.m. for registration) and lasting

until 9:30 p.m.

Further information about the workshop and registration forms can be obtained from:

Richard Lynch 12 Greenbrier Road Greenville, RI 02828.

There may be a small amount of time available for speakers other than those currently on the workshop schedule. If you have a short paper you would be interested in presenting, please contact Charles S. Morris at the address given on page 2.

ROMAN NUMERAL DESIGNATIONS OF COMETS.

The following tabulation continues that on \underline{MPC} 5660. Comet 1979 XI refers to a belated discovery (cf. \underline{IAUC} 3640, 3647). Comet 1980p does not exist.

Comet			7	c	Name	Year/letter	Ref.
1979	XI :	1979	Aug.	30.9	Howard-Koomen-Michels		IAUC 3647
1980			Apr.	11.1	P/Honda-Mrkos-Pajdušáková	1980 c	IAUC 3472
1980			Apr.	19.9	Torres	1980e	MPC 5836
	III		May	19.5	P/Russell 2	1980o	MPC 5639
_	IV		June	22.4	Černis-Petrauskas	1980k	MPC 5640
1980			Sept.	3.4	P/Lovas	1980s	MPC 5975
1980			Sept.		P/Forbes	1980a	IAUC 3460
1980			Oct.	5.1	P/Wild 3	1980d	MPC 5413
1980			Oct.	29.8	P/Reinmuth 1	1979j	IAUC 3417
1980			Nov.	25.4	P/Brooks 2	1980 f	IAUC 3486
1980			Dec.	5.2	P/Stephan-Oterma	1980g	IAUC 3488
	ΧI		Dec.	6.6	P/Encke	J	IAUC 3526
1980			Dec.	9.7	Meier	1980 q	MPC 5975
1980			Dec.	14.7	P/Tuttle	1980h	IAUC 3493
		•		24.6	P/Harrington	1980m	IAUC 3513
1980	XIV		Dec.		•	1980 t	MPC 5837
1980	XV		Dec.	29.5	Bradfield	17001	111 0 3007

LETTER TO THE EDITOR

To the Editor:

With respect to point 5 on page 69 of the July 1981 issue, it would seem sensible to stress that you should compare like with like. My own observations of P/Swift-Gehrels show that there is in excess of one magnitude difference between estimates made with an 11" reflector and a 12" refractor using similar magnification.

Jonathan Shanklin 12 Victoria Street Cambridge, England CB1 lJP

Mr. Shanklin raises a valid point. When we suggested in our article on the improvement of visual comet photometry that observers should review their observations after the comet's apparition and compare them with other published data, we neglected to mention that significant differences can be obtained by observers using different instruments. As Mr. Shanklin points out, a large difference will occur between large aperture reflectors and refractors (cf. Morris 1973, P.A.S.P. 85, 470). In addition to instrument type, observations made with instruments of significantly different apertures can result in substantially different estimates (i.e., the aperture effect). Thus, one should compare their observations to those made with a similar aperture and type of instrument. —The Editors

FUNDING FOR PROPOSED PROBE TO HALLEY'S COMET

Scott Mize

Northeastern U.S. Representative, Delta Vee, Inc.

Halley's Comet will make its once-in-a-lifetime voyage through the inner solar system in 1986. Of all the major technological nations, only the United States has given up its plans to visit this most famous of celestial visitors. The Administration's tragic unwillingness to fund the mission is but one more nail in the coffin of American space science.

Delta Vee, home of the Viking Fund, is proposing a solution to this problem. RCA is willing to modify a Dynamics Explorer spacecraft to fly the Halley Mission at 1/3 the cost of the original government mission. Every attempt would be made to ensure that this probe will carry an excellent package of scientific instruments, with special emphasis on high-quality imaging. The millions needed to finance this non-profit mission can be raised from a combination of private donations, corporate support, foundation contributions, and the sale of images and other comet memorabilia. Individuals within the closed-circuit— and cable—television industry believe that exclusive rights to broadcast the encounter with Halley's Comet would be worth millions.

The first goal is to raise \$500,000 by October 1982. The Halley Fund is our first chance, and perhaps our last, to change the way the space program does business. The public can play a vital role in making the Halley Mission a success, by donations and by rallying friends to support the mission. Your tax deductible contribution may be mailed to: The Halley Fund; 3033 Moorpark Ave., Suite 27; San Jose, CA 95128. If the Halley Mission cannot be realized, the money collected will be used to support other forms of comet research. For more information, contact Delta Vee at the above address, or Scott Mize at Leverett D-21, Harvard University, Cambridge, MA 02138, phone 617-497-5337.

INDEX TO THE INTERNATIONAL COMET QUARTERLY: VOLUME 3 (1981)

Following is an index to the 4 issues published in 1981 as Volume 3. Indices for each volume are published in the following January issue. References listed below indicate issue number and page; for example, (1:5) indicates [Vol. 3] No. 1, page 5. —D.W.E.G.

LIST OF MAJOR ARTICLES, BY TITLE: The Apparition of P/Schwassmann-Wachmann 2 (1979k), by Charles S. Morris (4:103) Comet Experts Gather in Tucson, by Charles S. Morris (2:35) The Discovery of Periodic Comet Boethin 1975 I (1975a), by Leo Boethin (2:63) Narrowband Filters for Cometary Photometry, by Michael F. A'Hearn (3:91) The Next Return of the Comet of the Perseid Meteors, by Brian G. Marsden (3:69) The 1980 Apparition of Periodic Comet Encke, by Daniel W. E. Green and Charles S. Morris (1:10) The 1980-81 Apparition of Periodic Comet Tuttle, by Charles S. Morris and Daniel W. E. Green (2:44) On the Outbursts of P/Comet Schwassmann-Wachmann 1 During 1980-81, by C.-Y. Shao (3:76) On the Peculiar Dust Tails of Some Comets and the History of One Investigation, by Zdenek Sekanina (4:95) Recent Outbursts of P/Schwassmann-Wachmann 1, by Masaaki Huruhata (3:77) A Report on the 1980-81 Apparition of Periodic Comet Stephan-Oterma 1980g, by Daniel W. E. Green and Charles S. Morris (2:42) A Review and Recalculation of Bobrovnikoff's Photometric Power-Law Solutions for P/Comet Halley 1910 II, by Charles S. Morris and Daniel Green (4:100) A Review of Visual Comet Observing Techniques -- II, by Charles S. Morris (1:3) A Review of Visual Comet Observing Techniques -- III, by Charles S. Morris (3:89) The Roles of the ICQ and Individual Observers in the Improvement of Visual Cometary Photometry, by Daniel W. E. Green and Charles S. Morris (3:67) Some Procedures for Comet Discovery, by William A. Bradfield (3:71) The Tenth Apparition of P/Comet Borrelly, by Charles S. Morris and Daniel W. E. Green (4:115) Visual Magnitudes and the S.A.O. Catalog, by David Herald (2:43) LIST OF MAJOR ARTICLES, BY AUTHOR: A'Hearn, M. F. Narrowband Filters for Cometary Photometry (3:91) Boethin, L. The Discovery of Periodic Comet Boethin 1975 I (1975a) (2:63) Bradfield, W. A. Some Procedures for Comet Discovery (3:71) Green, D. W. E., and C. S. Morris. A Report on the 1980-81 Apparition of Periodic Comet Stephan-Oterma 1980g (2:42) Green, D. W. E., and C. S. Morris. The Roles of the ICQ and Individual Observers in the Improvement of Visual Cometary Photometry (3:67) Green, D. W. E., and C. S. Morris. The 1980 Apparition of Periodic Comet Encke (1:10) Herald, D. Visual Magnitudes and the S.A.O. Catalog (2:43) Huruhata, M. Recent Outbursts of P/Schwassmann-Wachmann 1 (3:77)

Marsden, B. G. The Next Return of the Comet of the Perseid Meteors (3:69)
Morris, C. S. A Review of Visual Comet Observing Techniques -- III (3:89)
Morris, C. S. A Review of Visual Comet Observing Techniques -- II (1:3)
Morris, C. S. Comet Experts Gather in Tucson (2:35)
Morris, C. S. The Apparition of P/Schwassmann-Wachmann 2 (1979k) (4:103)
Morris, C. S., and D. W. E. Green. The Tenth Apparition of P/Comet Borrelly (4:115)

LIST OF MAJOR ARTICLES, BY AUTHOR (Cont.):

INDEX TO THE <u>INTERNATIONAL COMET QUARTERLY</u>: VOLUME 3 (1981)

```
Morris, C. S., and D. W. E. Green. The 1980-81 Apparition of Periodic Comet
     Tuttle (2:44)
Morris, C. S., and D. W. E. Green. A Review and Recalculation of
     Bobrovnikoff's Photometric Power-Law Solutions for P/Comet Halley 1910 II
Sekanina, Z. On the Peculiar Dust Tails of Some Comets and the History of
     One Investigation (4:95)
Shao, C.-Y. On the Outbursts of P/Comet Schwassmann-Wachmann 1 During 1980-81
     (3:76)
LIST OF OTHER COLUMNS, NOTES, AND SHORT ARTICLES, BY TITLE:
[Here, the following abbreviations are used for the ICQ Editors:
   DWEG = D. W. E. Green; CSM = C. S. Morris; TLR = T. L. Rokoske]
Photometric Parameters of Comets, by CSM (1:6)
An Ephemeris for Periodic Comet Schwassmann-Wachmann 1, by DWEG (3:92)
From the Editor, by DWEG (1:2, 3:66, 4:94)
From the Editors, by DWEG, CSM, and TLR (2:34)
Roman Numeral Designations of Comets in 1978 and 1979 (1:5)
North Polar Sequence, AAVSO Chart 1 (1:7)
Request from the Editors, by CSM and DWEG (1:8, 2:39, 3:90)
Letter to the Editor, by David Herald (1:8)
Suggestions on the Use of ICQ Observations, by CSM and DWEG (1:8)
Recent News Concerning Comets, by DWEG (1:9, 2:39, 3:75, 4:98)
Ephemerides of Currently Bright Comets, by DWEG (1:12)
Tabulation of Comet Observations, by DWEG (1:15, 2:48, 3:77, 4:104)
Lunar Phases 1980-1981 (1:28)
Notice Concerning Drawings and Photographs of Comets, by DWEG (1:28)
Index to the INTERNATIONAL COMET QUARTERLY: Volume 2, by DWEG (1:29)
Drawings of P/Stephan-Oterma, by Stephen O'Meara (1:1, 1:32)
Ephemeris for Comet Bowell 1980b (2:33, 2:40)
Corrigenda (2:39, 4:114)
New Comet Observation Report Form, by DWEG (2:40)
Extended Ephemeris for Comet Panther (1980u) (2:64)
Key to Sources (2:46)
New Additions to the Observer Key (1:15, 2:46, 3:78, 4:104)
New Additions to the Reference Key (1:15)
Key to References.(2:47)
Drawing of the Path of the Comet of 1764 by Messier (3:65-66)
Drawings of Comet Bradfield 1980t, by Stephen O'Meara (3:75-76)
Ephemerides for P/Comets Swift-Gehrels 1981j and Kearns-Kwee 1981h (1:99-100)
Report of the Dutch Comet Section (4:114)
The 1982 American Workshop on Cometary Astronomy (4:116)
TABULATED OBSERVATIONS AND NEWS OF INDIVIDUAL COMETS (by designation):
INOTE: Not included here is the Roman-numeral-designation list of comets
   on page 5 of Vol. 3, No. 1; nor is the list of Bradfield's 11 comets
   on page 74 of Vol. 3, No. 3]
Comet of 1764: (3:65-66)
Comet 1862 III (P/Swift-Tuttle): (2:36, 3:69, 3:89)
Comet 1910 I (Great January Comet): (4:97)
Comet 1910 II (P/Halley): (2:35-39, 4:100)
Comet 1957 V (Mrkos): (4:96)
```

INDEX TO THE INTERNATIONAL COMET QUARTERLY: VOLUME 3 (1981)

```
TABULATED OBSERVATIONS AND NEWS OF INDIVIDUAL COMETS (Cont.):
Comet 1968 VI (Honda = 1968c): (3:78)
Comet 1973 XII (Kohoutek = 1973f): (2:36, 4:96)
Comet 1974 II (P/Schwassmann-Wachmann 1): (1:26, 2:35, 3:75-77, 3:88, 3:92,
     4:99, 4:112, 4:114)
Comet 1974 III (Bradfield = 1974b): (1:4)
Comet 1975 I (P/Boethin = 1975a): (2:63)
Comet 1975 IX (Kobayashi-Berger-Milon 1975h): (1:15)
Comet 1975 X (Suzuki-Saigusa-Mori 1975k): (1:15, 1:19, 2:48)
Comet 1976 VI (West = 1975n): (1:4, 1:8, 2:36-39, 3:90, 4:95)
Comet 1977 VI (P/Grigg-Skjellerup = 1977b): (3:86)
Comet 1977 XIV (Kohler = 1977m): (1:19, 3:78)
Comet 1978 IV (P/Chernykh = 19771): (3:88)
Comet 1978 VII (Bradfield = 1978c): (1:21, 3:83)
Comet 1978 XI (P/Wild 2 = 1978b): (1:24, 3:88)
Comet 1978 XIV (P/Ashbrook-Jackson 1977g): (3:88)
Comet 1978 XIX (P/Denning-Fujikawa = 1978n): (1:25)
Comet 1978 XV (Seargent = 1978m): (1:21, 3:83)
Comet 1978 XX (P/Haneda-Campos = 1978j): (3:87)
Comet 1978 XXI (Meier = 1978f): (3:83, 4:114)
Comet 1979 IX (Meier = 1979i): (3:83)
Comet 1979 VII (Bradfield = 1979c): (1:21)
Comet 1979 VIII (P/Schwassmann-Wachmann 3 = 1979g): (1:24)
Comet 1979 X (Bradfield = 19791): (1:3, 2:49, 3:68, 3:83, 4:104)
Comet 1979 XI (Howard-Koomen-Michels, Sungrazing Comet): (4:98)
Comet 1979k (P/Schwassmann-Wachmann 2): (1:9, 1:12, 1:24, 2:35, 2:56, 3:88,
     3:90, 4:103)
Comet 1980 IV (Černis-Petrauskas = 1980k): (1:21, 2:50)
Comet 1980 V (P/Lovas = 1980s): (1:9)
Comet 1980 X (P/Stephan-Oterma 1980g): (1:4, 1:6, 1:9, 1:26, 2:35-37, 2:42,
     2:59, 3:68, 3:89, 3:90, 4:112)
Comet 1980 XI (P/Encke): (1:9-10, 1:23, 2:35, 2:46, 2:54, 3:86, 3:90, 4:110)
Comet 1980 XII (Meier = 1980q): (1:9, 1:12, 1:22, 2:35, 2:50, 3:84, 3:90,
     4:105)
Comet 1980 XIII (P/Tuttle = 1980h): (1:6, 1:9, 1:25, 2:35, 2:44, 2:57, 3:88,
     3:90, 4:111)
Comet 1980 XV (Bradfield = 1980t): (1:1, 1:2, 1:4, 1:9, 1:12, 1:22, 1:32,
     2:36, 2:39, 2:50, 3:75-76, 3:84, 3:90, 4:106)
Comet 1980b (Bowell): (2:33, 2:35, 2:40, 2:54, 3:86, 3:90, 4:110)
Comet 1980i (P/Borrelly): (1:9, 1:12, 2:55, 3:87, 3:90, 4:111, 4:115)
Comet 19801 (Russell): (2:49)
Comet 1980u (Panther): (1:6, 1:9, 1:12, 1:23, 2:39, 2:52, 2:64, 3:85, 3:90,
     4:107)
Comet 1981a (P/Longmore): (1:32)
Comet 1981b (P/Bus): (2:39, 2:54)
Comet 1981c (Elias): (2:39)
Comet 1981d (Bus): (3:75)
Comet 1981e (P/Finlay): (3:75)
Comet 1981f (P/Gehrels 2): (3:75, 4:99)
Comet 1981g (Gonzalez): (4:99)
Comet 1981h (P/Kearns-Kwee): (4:99-100)
Comet 1981i (P/Slaughter-Burnham): (4:99)
Comet 1981j (P/Swift-Gehrels): (4:99-100, 4:111)
Comet 1981k (P/Howell): (4:99)
```

TABULATION OF COMET OBSERVATIONS

Included in this issue are observations made of comets by members of the Comet Section of the British Astronomical Association (B.A.A.) during the years 1948-1954. Having been prepared for publication by M. J. Hendrie, this is the first time most of these data have been published. Hendrie and C. S. Morris are currently preparing analyses for publication in one or more articles in the <u>Journal</u> of the B.A.A. The 1948-1954 series of B.A.A. observations could not be published in entirety in this issue, and the remainder up to 1954 will be published in the April issue.

Also included in this issue are recent observations which have been sent directly to the ICQ.

The first in a series of articles on magnitude references may be found on page 5 of this issue. No "non-critical" cometary observations made after December 31, 1981, will be published in the <u>ICQ</u> without indication of proper magnitude source for comparison stars, as part of our effort to improve the data available for light curve analyses. We have temporarily retained the "old" code system for references (Reference Key), as used in these tabulations of observations, but hope to instate a new 2-letter key with the April issue.

NEW ADDITIONS TO THE OBSERVER KEY (cf. ICQ 3, 46):

```
ACF
      07 F. J. ACFIELD, ENGLAND
BAT
      07 F. M. BATESON, COOK IS.
BER02 07 D. C. BERRY, NEW ZEALAND
BLA
      07 R. A. BLACKETT, ENGLAND
BRI
      07 A. BRITO, CEYLON (SRI LANKA)
BROO2 07 P. L. BROWN, ENGLAND
BROO3 07 D. W. BROWN, ENGLAND
BUR01 07 H. T. BURGESS, N. RHODESIA
CLA02 07 W. A. CLARK, ENGLAND
COLO1 07 E. H. COLLINSON, ENGLAND
DAV
      07 M. DAVIES-SCOURFIELD, ENGLAND
DIN
      07 C. DINWOODIE, SCOTLAND
FRI
      07
         J. FRIENDS, ENGLAND
FULO1 07 D. J. FULCHER, ENGLAND
GAY
      07 W. T. GAYFER, ENGLAND
      07 W. A. GRANGER, ENGLAND
GRA
      07 A. R. HAMILTON, ENGLAND
HAM
JAC
      07 C. JACKSON, YALE COLUMBIA STATION
JEF
      07 A. JEFFREY, LIBYA
KEL
      07 G. F. KELLAWAY, ENGLAND
LINO1 07 W. M. LINDLEY, ENGLAND
MERO1 07 A. MERER, ENGLAND
MERO2 07 G. MERTON, ENGLAND
      07 G. R. NANKIVELL, NEW ZEALAND
NAN
PHI
      07 D. A. PHILPOTT, NEW ZEALAND
SMIO4 07 J. R. SMITH, ENGLAND
      07 A. T. SOPER, ENGLAND(?)
SOP
```

STE06 07 W. H. STEAVENSON, ENGLAND STO01 07 G. E. STONE, ENGLAND

07 J. L. WHITE, ENGLAND

WHI

"Eclipse Comet" (1948 XI = 19481)

DATE (UT)	MAG. R MM	AP. T	F/	PWR	COMA	DC	TAIL	PA	OBS.
1948 11 08.65	1 :	0.0 E	•				1.5		JON
1948 11 08.70		7.5 R		20		8	1.5		JON
1948 11 11.00	2:	0.0 E			15	7	18		BRI
1948 11 12.00	2:	0.0 E					8		JEF
1948 11 12.07	2.0	0.0 E					20		JAC
1948 11 13.00	2.0 X	0.0 E							BRI
1948 11 14.06	2.5	0.0 E							JAC
1948 11 14.70	4.0 X	В			4	7	5		JON
1948 11 15.06	2.5	0.0 E							JAC
1948 11 17.70	4.0 X	В			3	5	3		JON
1948 11 18.60	3.7 V	∠ B			3 3		3	270	JON
1948 11 18.65	3.7 X	0.0 E					6	260	BER02
1948 11 19.00		0.0 E					5		BRI
1948 11 19.66	3.9 X	0.0 E			4				BER02
1948 11 22.00	4.2 X	0.0 E					5		BER02
1948 11 25.58	4.3 X	В			4	5			BER02
1948 11 25.60	4.4 X S	В			4	_	4		JON
1948 11 26.50		В					5	275	JON
1948 11 28.50	4.5 X	В			4		6		BER02
1948 11 28.60	4.7 V S	В			-	2	5	280	JON
1948 12 01.60	4.9 V S	. В			6	3		290	JON
1948 12 02.50	4.7 X	0.0 E			_	_	6		BER02
1948 12 02.60	5.3 V S	В			8	3	0.1		JON
1948 12 05.50	4.8 X	9.0 R			6	3	0.1		BER02
1948 12 06.50	5.3 X	9.0 R			4	3	2		BER02
1948 12 07.60	5.7 S	В			5	3	1	290	JON
1948 12 08.40	5.1 C	0.0 E			4	3	3		BER02
1948 12 09.48	5.2 X	0.0 E			5	_	1.5		BER02
1948 12 09.60	5.7 D S	В			5	1	1		JON
1948 12 10.40	5.1 X	0.0 E			3	2	2		BER02
1948 12 10.60	5.5 V S	В			7	7	2		JON
1948 12 11.60	5.6 V S	В			·	4	1		JON
1948 12 15.40	6.2 X	8.0 R	4	6	3	3			BER02
1948 12 15.60	5.8 V S	В			4	4	0.1	300	JON
1948 12 17.40		8.0 R		6	3	2			BER02
1948 12 17.40	5.9 V S	В				4			JON
1948 12 18.48		8.5 R			2.1	2	0.7	329	BER02
1948 12 20.50	6.1 V S	В			5	4			JON
1948 12 20.50		32.0 L	5	104			0.1	330	JON
1948 12 21.50	6.2 V	В							JON
1948 12 24.50	7.0 V S	7.5 R		23					JON
1948 12 24.50					2		0.7	345	BER02
1948 12 28.50	7.3 V S	7.5 R		23	4	4	0.1	360	JON
1948 12 29.95	8 :	15.0 R		40	4	1			BRO02
1948 12 30.05	8 :	23.0 L		50	3	2			WHI
1949 01 02.03	7.5 B	13.3 R		33	7	4			FUL01
1949 01 06.50		20.0 L		36	5	4			JON
1949 01 06.50	7.8 V S	7.5 R		23		-			JON
1949 01 09.00	8.8 B	13.0 R		33	3	6			FUL01
1949 01 10.60	8.1 V S	7.5 R		23	4	5	0.1	360	JON
1949 01 14.60	9.0 V S	20.0 L		36	3.5	4			JON
1949 01 20.50	9.2 V S	14.0 R		42	4	4			JON
1949 01 21.90	9:	76.0 L		150	5	3			STE06

"Eclipse	Comet"	(1948	XΙ	= 1948	 Cont.
----------	--------	-------	----	--------	---------------------------

	•							
DATE (UT)	MAG. R MM	AP. TF/	PWR (AMOX	DC	TAIL	PA	OBS.
1949 01 24.50	9.8 V S	32.0 L	62	2.5	3	0.1	10	JON
1949 02 01.50	11.2 V S	32.0 L	62	1.5	3	0.1	140	JON
1949 02 02.50	10.8 V S	32.0 L	62	2	3			JON
1949 02 03.99	10.5 B	13.0 R	33	2	3			FUL01
1949 02 04.50	10.8 V S	20.0 L	36		2			JON
1949 02 05.60	10.9 V S	20.0 L	36	2.5	2			JON
1949 02 16.90	10.7:	76.0 L	150	6	3			STE06
1949 02 17.80	11.2 B	30.0 R	180	2	2			MERO2
1949 02 27.89	11.7 B	30.0 R	180	1.5	4			MERO2
1949 03 03.83	11.8	30.0 R	250	1.0				MERO2
1949 03 24.90	12.5:	30.0 R	300	0.5				MERO2
Winter-ali (1051	- 1050:\							

Minkowski (1951 I = 1950b)

willkowski (1951	. I = 1930b)							
DATE (UT)	MAG. R MM	AP. T F/	PWR	COMA	DC	TAIL	PA	OBS.
1950 06 22.00	11 :X	23.0 L	150	0.8	7			WHI
1950 07 05.50	10.9 V S	32.0 L	62		7			JON
1950 07 14.95	11.3 V	23.0 L	150					WHI
1950 07 15.00	10.2 B	32.0 R	65	2	8	0.1	120	MERO2
1950 07 15.00	10.7 P			2				MERO2
1950 07 16.40	11.8 V S	32.0 L	62	0.5	4			JON
1950 07 16.97	10:	15.0 R		1.5	5			GRA
1950 07 18.40	11.3 V S	32.0 L	104	1				JON
1950 07 19.40	11.5 V S	32.0 L	104	0.7	5	0.1	90	JON
1950 08 03.30	11.8 V S	32.0 L	62	1	5			JON
1950 08 06.90	10 :	32.0 R	120	1	7			MERO2
1950 08 07.30	11.7 V S	32.0 L	62	1	6	0.5		JON
1950 08 08.40	12.0 V S	32.0 L	62		6			JON
1950 08 10.30	12.4 V S	32.0 L	62	0.6	7			JON
1950 08 11.30	12.4 V S	32.0 L	62		5			JON
1950 08 13.30	12.2 V S	32.0 L	62	0.7	5			JON
1950 08 16.90	11 :	64.0 R	210	0.3		0.05	90	STE06
1950 09 02.40	11.5 V S	20.0 L	36		4			JON
1951 01 05.60	10.8 V S	20.0 L	35	1	7			JON
1951 01 06.60	11.0 V S	20.0 L	35		5			JON
1951 01 07.60	10.8 V S	20.0 L	35	1	5			JON
1951 01 12.60	10.6 V S	20.0 L	35	1	7			JON
1951 01 13.60	10.8 V S	20.0 L	35	1	7			JON
1951 01 14.60	11.0 V S	32.0 L	52	1	4	0.05	35	JON
1951 01 19.60	10.4 V S	32.0 L	52					JON
1951 01 19.60	10.8 V S	14.0 R	42					JON
1951 02 03.60	10.6 V S	32.0 L	52		8			JON
1951 02 13.60	10.4 V S	14.0 R	42	1.5				JON
1951 02 13.60	10.5 V S	32.0 L	52		8			JON
1951 02 16.60	10.1 V S	20.0 L	35	1.2	7			JON
1951 02 17.60	10.4 V S	20.0 L	35	2	7			JON
1951 03 07.50	9.9 V S	14.0 R	42	2.1	7			JON
1951 03 12.50	9.9 V S	14.0 R	42	2	8	0.1	50	JON
1951 03 15.00	9.9 V S	32.0 L	48					JON
1951 03 15.50	9.8 V S	14.0 R	42	2	7	0.1	70	JON
1951 03 15.50	9.6 V S	7.5 R						JON
1951 03 16.40	9.5:	15.0 R	108	1	3			NAN
1951 03 16.60	9.9 V S	32.0 L	48					JON
1951 03 17.60	10.2 V S	14.0 R	42	2.1	8			JON

0.1 250 JON

0.2 270 JON

0.2 270 JON

JON

0.1

1.25 7

1

1.3

1

5

8

8

23

58

35

23

8.9 V S

8.5 V S

8.4 V S

8.4 V S

1951 12 30.60

1951 12 31.60

1952 01 02.60

1952 01 05.60

7.5 R

20.0 L

20.0 L

7.5 R

Minkowski (1951	I = 1950b)	Cont.						
DATE (UT)	MAG. R MM	AP. T F/	PWR	COMA	DC	TAIL	PA	OBS.
1951 03 17.60	10.0 V S	32.0 L	48	00.41	8	0.1		JON
1951 03 17.00	10.2 V S	32.0 L	48		8	0.1		JON
1951 03 29.38	9.5:	6.0 A			•	• • •		NAN
1951 04 05.60	10.2 V S	14.0 R	42	1.5	8			JON
1951 04 06.50	10.2 V S	20.0 L	35	1.5	8	0.1	70	JON
1951 04 08.40	10.2 V S	32.0 L	48	_ •••	8	0.15		JON
1951 05 02.40	11.0 V S	32.0 L	49	0.7				JON
1951 05 03.40	11.2 V S	14.0 R	42		5	0.05	85	JON
1951 05 05.40	11.4 V S	32.0 L	48	0.6	6			JON
1951 05 06.30	11.1 V S	32.0 L	48		4			JON
1951 05 07.40	11.2 V S	32.0 L	48		5			JON
1951 05 27.30	12.6 V S	14.0 R	42	0.4	3			JON
1951 05 27.30	12.2 V S	32.0 L	48	0.4	3			JON
1951 06 04.30	12.6 V S	32.0 L	48		2			JON
1951 06 09.30	12.7 V S	32.0 L	48		2			JON
1951 06 30.30	12.6 V S	32.0 L	48	0.7	2			JON
Pajdušáková (19	51 II = 195	1a)						
DATE (UT)	MAG. R MM	AP. TF/	PWR	COMA	DC	TAIL	PA	OBS.
- ·	8.4 B	5.0 R		0.5	8	0.15	340	MER02
1951 02 06.30	7.8 B	32.0 R	65					MER02
1951 02 07.25	8.5:B	25.0 L			8			ACF
1951 02 07.25	8.1 B	32.0 R	65	0.7	8	0.05		MER02
1951 02 09.25	7.1 S S	10.0 R	30	1.5	8	0.15	335	ALC
1951 02 09.25	7.7:	15.0 R	60	1.1		0.1	340	GRA
1951 02 10.23	7.7 S S	10.0 R	30	2	8	0.15	337	ALC
1951 02 10.24	7.5:	14.0 R	33	1	7	0.1	350	FUL01
1951 02 12.24	7.0:	14.0 R	33	1	7	0.1	340	FUL01
1951 02 17.78	8.6 B S	10.0 R	30	2	7	0.05	345	ALC
1951 02 18.18	7.4 B	14.0 R	33	1.5	6	0.1	330	FUL01
1951 02 19.79	8.4 B S	10.0 R	30	2	8	0.05	340	ALC
1951 02 20.80	9.2 B S	10.0 R	30	2.5	6			ALC
1951 02 27.83	8.5 B	14.0 R	33	3	5			FUL01
1951 03 03.85	9.3:	15.0 R	60	1.5	6	0.05	330	GRA
1951 03 03.90	9.5:	32.0 R	65	0.5	8	0.05	345	MERO2
1951 03 04.83	9.2 V	14.0 R	33	1	4	0.05	300	FUL01
1951 03 06.83			60					GRA
1951 03 26.97	11 :				4			FUL01
1951 03 27.84	11 :	14.0 R			3			FUL01
1951 03 29.90		23.0 L	55	2	3			GAY
Wilson-Harringt	on (1952 I	= 1951i)						
DATE (UT)	MAG. R MM	AP. T F/	PWR	COMA	DC	TAIL	PA	OBS.
1951 08 09.92		76.0 L		0.3				STE06
1951 08 10.92	13 :			0.5				STE06
	9.6 V S					0.03	270	JON .
1951 12 27.60						0.05		
1951 12 28.60					5	0.04	270	JON
1951 12 30.60					5			

Wilson-Harrington (1952 I = 1951i) Cont.

DATE (UT)	MAG. R MM	AP. T F/	PWR	COMA	DC	TAIL		OBS.
1952 01 05.60	7.4 V	7.0 R	21		6	0.15	270	PHI
1952 01 06.60	8.4 V S	20.0 L	35	1.3	8	0.2	265	JON
1952 01 13.60		32.0 L	48		7	0.25	265	JON
1952 01 13.60	7.9 V S	7.5 R	23					JON
1952 01 18.60	7.1 V S	7.5 R	23		7	1.0	245	JON
1952 01 21.50	6.6 V	7.0 R	21	1.5		0.1		PHI
1952 01 21.60	7.1 V S	7.5 R	23		8	0.75	250	
1952 01 23.50	6.0 V	7.0 R	21		9	0.15		
1952 01 23.65	0.0	15.0 L	20		7	0.5		NAN
1952 01 23.70	7.1 V S	7.5 R	23	2	8	0.7	245	JON
1952 01 25.70	6.0 X	4.5 R	10	4	9	0.3	247	PHI
1952 01 26.50	6.4 V S	7.5 R	23	3	8	0.75	215	
1952 01 26.50	6.7 X	15.0 L	20	J	O	0.75	417	NAN
1952 01 28.50	5.9 X	4.5 R	10	3	0	0.3	170	PHI
				3	9 8			
1952 01 28.70	6.3 V S	7.5 R	23	3	8	1.0		JON
1952 01 29.40	5.6 X	4.5 R	10		0	0.5	1/0	PHI
1952 01 29.46	6.4 V	15.0 L	20		^	۰	100	NAN
1952 01 30.40	5.7 V	4.5 R	10		9	0.5	120	PHI
1952 02 04.40	6.3 V	4.5 R	10	_	9	0.15		PHI
1952 02 05.40	7.3 V S	5.0 R		3		0.75	90	JON
1952 02 05.40	6.8 V	4.5 R	10	2	8	0.1		PHI
1952 02 08.40	7.7 V	15.0 L	98	0.75	8	0.05		
1952 02 12.80	8:	7.0 R	30					ST001
1952 02 13.40	8.2 V S	7.5 R	23		6	0.1	90	JON
1952 02 15.40	8.8 V S	7.5 R	23					JON
1952 02 15.40	8.9 V	7.0 R	21	1.5		0.1		PHI
1952 02 15.80	8 :	15.0 R	60	1.2		0.1	80	GRA
1952 02 19.25	8:	25.0 L	72	2		0.25		COL01
1952 02 21.81	8.6 B	10.0 R	30	1.75	8	0.4	80	ALC
1952 02 21.81	8.7:	15.0 R	60	1		0.15	85	GRA
1952 02 21.82	8.5:	23.0 L	55			0.2	62	GAY
1952 02 21.88	8.5:	76.0 L	150	1.5	7	0.25	85	
1952 02 22.81	9:	23.0 L	55			0.15		GAY
1952 02 23.40	10.2 V S	20.0 L	54	1	5	0.3		JON
1952 02 23.80	9.9 B S	32.0 R	62	0.5	7	0.05		MERO2
1952 02 24.40	10.2 V S	32.0 L	48		5	0.3	• -	JON
1952 02 25.79	9.5 B	14.0 R	33	1.5		0.1	70	FUL01
1952 02 26.80	8.9 B	14.0 R	33			0.05		FUL01
1952 02 27.80	9.0	18.0 R	65	1.1	5	0.1		KEL
1952 03 05.80	10.2: S	32.0 R	240	2	,	0.1	00	MERO2
1/32 03 03.00	10.2.	32.0 R	2-10	_				1111102
Mrkos (1952 V =	1952c)							
DATE (UT)	MAG. R MM	AP. T F/	PWR	COMA	DC	TAIL	РΔ	OBS.
1952 05 17.00	9.7 B S	32.0 R	62	5	4			MERO2
1952 05 22.00	9.6 B S	32.0 R	62	4	4			MERO2
1952 05 22.05	9.7:	10.0 R	30	4.5	4	0.1	100	ALC
1952 05 26.05	10.0	10.0 R	30	4	4	0.1	100	ALC
1952 05 26.05	9.7 V S	14.0 R	34	7	-			JON
1952 06 25.80	9.7 V S	7.0 R	21		3			JON
1952 06 29.80			34	4	3			JON
	9.4 V S	14.0 R		6	3 4			FUL01
1952 06 30.00	9.3 B	13.0 R	33		4			
1952 07 03.80	9.0 V S	7.0 R	21	6				JON
1952 07 15.50	8.9 V S	7.0 R	21					JON

23

Mrkos (1952 V = 1952c) Cont.

	9.7 V S 10.3 V S 11.5 V S	32.0 L	PWR COM 55 7 21 8 21 5 48 3 21 21 6.5 7 21 4.5 21 6 48 4 49 2.5 86 48 1.5	2 5 5 6 5 2	TAIL	PA OBS. GAY JON
1952 06 23.00 1952 07 15.00 1952 07 20.98	MAG. R MM 10.5: S 9 : 9.3 V	AP. T F/ 32.0 L 7.0 R 10.0 R	PWR COM/ 62 3.5 30 5 48		TAIL	PA OBS. MERO2 STO01 FRI
1952 08 29.94	9.3 V 9.3 V 9.3: 9.3 9.6 V 9.5 11.5:	10.0 R 13.0 R 13.0 R 7.0 R 10.0 R 7.0 R 76.0 L	48 33 4 30 6 48 30 5 150 2	5 4 4 2	0.1	FRI 60 FUL01 FUL01 ST001 FRI ST001 STE06
Harrington (19 DATE (UT) 1952 08 22.96 1952 12 12.44 1952 12 17.45 1953 01 07.45 1953 01 08.45 1953 01 10.46 1953 01 10.46 1953 01 10.46 1953 01 20.45 1953 02 09.43 1953 02 09.43 1953 02 21.40 1953 02 22.40 1953 03 10.39 1953 03 12.40 1953 03 12.40 1953 03 12.40 1953 03 12.40 1953 03 12.40 1953 03 12.40 1953 03 12.40 1953 03 12.40 1953 03 12.40 1953 03 12.40 1953 03 12.40		AP. T F/ 76.0 L 7.0 R 7.0 R 20.0 L 20.0 L 7.0 R 20.0 L 7.0 R 7.0 R 20.0 R 7.0 R	PWR COM/ 150 1 23 23 54 3 54 3 23 23 54 3 23 23 21 21 23 21 21 23 21 21 23 21 21 23 21 21 23 21 21 23 21 23 23	5 5 5	TAIL	PA OBS. STE06 JON

Harrington (1953 I = 1952e) Cont.

Harrington (19	153 1 = 19526	e) Cont.			
DATE (UT) 1953 04 14.35 1953 04 16.36 1953 04 18.40 1953 05 07.31 1953 05 08.32	MAG. R MM 10.5 V S 10.8 V S 10.8 V S 11.5 V S 11.7 V S	AP. T F/ 14.0 R 14.0 R 20.0 L 16.0 R 32.0 L	PWR COMA 65 34 34 2.5 34 48	DC TAIL 2 2 2 2	PA OBS. JON JON JON JON JON JON
Mrkos (1953 II	= 1952f)				
DATE (UT) 1952 12 15.60 1952 12 16.60 1952 12 17.60 1952 12 23.58 1952 12 24.59 1952 12 25.60 1952 12 26.61 1952 12 28.64 1952 12 29.63 1953 01 06.48 1953 01 07.46 1953 01 10.52 1953 01 10.52 1953 01 10.53 1953 01 11.43 1953 01 13.64 1953 01 15.51	MAG. R MM 10.2 V S 9.9 V S 9.7 V S 8.6 V S 8.4 V S 8.3 V S 8.4 V S 8.2 V S 8.2 V S 8.2 V S 8.3 V S 8.4 V S 8.5 V S 8.7 V S 8.7 V S 7.4 V S 7.5 V S 7.4 V S	AP. T F/ 14.0 R 14.0 R 14.0 R 7.0 R	PWR COMA 42 & 2 42 2.5 42 3 23 23 23 23 23 23 23 23 23 21 2 23 21 2 23 21 2	DC TAIL 2 4 5 5 8 8 8	PA OBS. JON
1953 01 13.31 1953 01 18.43 1953 01 19.4/	7.4 V 7.3 V 7.2 V	7.0 R	21 3	9	PHI
1953 01 19.47 1953 01 20.42 1953 01 20.51 1953 01 20.51 1953 01 21.42	7.2 V 7.2 V 8.1 V S 9.1 V S 7.3 V	7.0 R 7.0 R 7.0 R 14.0 R 7.0 R	21 3 21 3 23 42 4 21 3	8 8 7 8	PHI PHI JON JON
1953 01 27.47 1953 01 27.63	7.5 V 7.5 V 8.2 V S	7.0 R 7.0 R 7.0 R	21 2	8	JON PHI
1953 02 05.39 1953 02 06.41 1953 02 08.40 1953 02 08.43	7.7 V 7.9 V S 8.0 V 8.2 V S	7.0 R 7.0 R 7.0 R 7.0 R 7.0 R	23 21 2 23 21 2 21	7 8	JON PHI JON PHI
1953 02 09.42 1953 02 13.39	8.2 V S 8.4 V	7.0 R 7.0 R 7.0 R	23 21 2	6 7	JON JON PHI
Mrkos-Honda (19			_		~
1953 05 03.95	MAG. R MM 8.7 B 8.8 B S 8.5 8.6 B S 8.3 B S	AP. T F/ 15.0 R 10.0 R 7.0 R 10.0 R 7.0 R	PWR COMA 60 4 30 3 30 3 30 3 25	DC TAIL 4 4 4 4	PA OBS. GRA ALC STO01 ALC STE06
1953 05 04.93	8.5 F S	10.0 R	30 3	5	ALC

8.7 B

9.2 B S

8.8

8.8

1953 05 04.98

1953 05 05.94

1953 05 06.91

1953 05 06.96

23.0 L

15.0 R

10.0 R

23.0 L

55

60

30

55

3

3

5.5

4

4

3

GAY

GRA

ALC

GAY

Mrkos-Honda (1953 III = 1953a) Cont.

DATE (UT)	MAG. R MM	AP. T F/	PWR COMA	DC	TAIL	PA	OBS.
1953 05 07.06	8.6 V S	7.0 R	30 3				ST001
1953 05 07.00	8.5 B	10.0 R	30 3	4			ALC
		7.0 R	25	•			STE06
1953 05 10.92	8.4 D S						ST001
1953 05 10.94	8.6 V S	7.0 R	30 3	-			
1953 05 10.95	8.7	23.0 L	55 3	5			GAY
1953 05 10.96	8.5 B	10.0 R	30 3	6			ALC
1953 05 10.99	8.7	15.0 R	60 5				GRA
1953 05 12.91	8.5	23.0 L	55 4.5	6			GAY
1953 05 13.01	8.7 B S	10.0 R	30 2.5	7			ALC
1953 05 13.94	8.5	23.0 L	55 4	6			GAY
1953 05 15.99	8.5:	25.0 L	100 & 4	•			ACF
1953 05 16.92	8.2 B S	10.0 R	30 3	6			ALC
				V			MERO2
1953 05 18.00	8.3 S	5.0 R	3.5	_			
1953 05 18.00	8.4 B S	10.0 R	30 2	6			ALC
1953 05 20.00	8.5: S	32.0 R	65 4	7			MERO2
1953 05 24.94	8.9 B S	10.0 R	30 2.5	5			ALC
1953 05 30.00	8.3 V S	7.0 R	30 3	4			STO01
1953 06 01.95	8.3 V S		30 3	6			ST001
1953 06 08.00	8.6 V S	7.0 R	30 4.5				STO01
		7.0 R	30 3				ST001
1953 06 11.00	9.0 V S	/.U K	30 3				51001
. V							
Pajdušáková (19)54 II = 195	3h)					
DATE (UT)	MAG. R MM	AP. T F/	PWR COMA	DC	TAIL		OBS.
1953 12 27.45	10.6 V	20.0 L	54 2.5	4	0.2	85	JON
Vozarova (1954	VTTT = 1954	f)					
VUZATUVA (1754	VIII 175	127					
DAME (IIM)	MAC P MM	AP. T F/	PWR COMA	DC	TAIL	РΔ	OBS.
• •	MAG. R MM			8	IVIN	ın	STE06
1954 08 06.90	8.5:	76.0 L	140 3.5	o	0 15	167	
1954 08 06.90		15.0 A 4	3	_	0.15	10/	
	9.5:	15.0 R 12	80 2	7			WAT
1954 08 07.90	9.5:	5.0 R	12				\mathtt{WAT}
105/ 00 11 00		J • • • • •					
1954 08 11.90	10.0:	76.0 L	140 2				STE06
		76.0 L		3			STE06 PAN
1954 08 25.93	11 :	76.0 L 15.0 L	140 2 30 3	3			
1954 08 25.93 1954 08 25.98	11 : 10.0:	76.0 L 15.0 L 76.0 L	140 2 30 3 140 2.5	3			PAN STE06
1954 08 25.93 1954 08 25.98 1954 08 26.90	11 : 10.0: 11.5:	76.0 L 15.0 L 76.0 L 76.0 L	140 2 30 3 140 2.5 140	3 3	0.02	50	PAN STE06 STE06
1954 08 25.93 1954 08 25.98 1954 08 26.90 1954 08 26.90	11 : 10.0: 11.5: 11.7 P	76.0 L 15.0 L 76.0 L 76.0 L 15.0 A 4	140 2 30 3 140 2.5 140 2	3 3 4	0.02	50	PAN STE06 STE06 WAT
1954 08 25.93 1954 08 25.98 1954 08 26.90 1954 08 26.90 1954 08 26.96	11 : 10.0: 11.5: 11.7 P 11.3 N	76.0 L 15.0 L 76.0 L 76.0 L 15.0 A 4 15.0 L	140 2 30 3 140 2.5 140 2 30 3	3 3	0.02	50	PAN STE06 STE06 WAT PAN
1954 08 25.93 1954 08 25.98 1954 08 26.90 1954 08 26.90 1954 08 26.96 1954 08 31.98	11 : 10.0: 11.5: 11.7 P 11.3 N 11.9 N	76.0 L 15.0 L 76.0 L 76.0 L 15.0 A 4 15.0 L	140 2 30 3 140 2.5 140 2 30 3 30	3 3 4 2	0.02	50	PAN STE06 STE06 WAT PAN PAN
1954 08 25.93 1954 08 25.98 1954 08 26.90 1954 08 26.90 1954 08 26.96 1954 08 31.98 1954 09 01.89	11 : 10.0: 11.5: 11.7 P 11.3 N	76.0 L 15.0 L 76.0 L 76.0 L 15.0 A 4 15.0 L	140 2 30 3 140 2.5 140 2 30 3 30 3	3 3 4	0.02	50	PAN STE06 STE06 WAT PAN PAN
1954 08 25.93 1954 08 25.98 1954 08 26.90 1954 08 26.90 1954 08 26.96 1954 08 31.98	11 : 10.0: 11.5: 11.7 P 11.3 N 11.9 N	76.0 L 15.0 L 76.0 L 76.0 L 15.0 A 4 15.0 L	140 2 30 3 140 2.5 140 2 30 3 30	3 3 4 2	0.02	50	PAN STE06 STE06 WAT PAN PAN
1954 08 25.93 1954 08 25.98 1954 08 26.90 1954 08 26.90 1954 08 26.96 1954 08 31.98 1954 09 01.89 1954 09 04.90	11 : 10.0: 11.5: 11.7 P 11.3 N 11.9 N 12.2 N 12 :	76.0 L 15.0 L 76.0 L 15.0 A 15.0 L 15.0 L 15.0 L 10.0 R	140 2 30 3 140 2.5 140 2 30 3 30 3	3 3 4 2	0.02	50	PAN STE06 STE06 WAT PAN PAN
1954 08 25.98 1954 08 25.98 1954 08 26.90 1954 08 26.90 1954 08 31.98 1954 09 01.89 1954 09 04.90 1954 09 05.90	11 : 10.0: 11.5: 11.7 P 11.3 N 11.9 N 12.2 N 12 : 12 :	76.0 L 15.0 L 76.0 L 15.0 A 15.0 L 15.0 L 15.0 L 10.0 R 15.0 R	140 2 30 3 140 2.5 140 2 30 3 30 30 40	3 3 4 2 2	0.02	50	PAN STE06 STE06 WAT PAN PAN PAN STE06
1954 08 25.93 1954 08 25.98 1954 08 26.90 1954 08 26.90 1954 08 26.96 1954 08 31.98 1954 09 01.89 1954 09 04.90	11 : 10.0: 11.5: 11.7 P 11.3 N 11.9 N 12.2 N 12 :	76.0 L 15.0 L 76.0 L 15.0 A 15.0 L 15.0 L 15.0 L 10.0 R	140 2 30 3 140 2.5 140 2 30 3 30 3	3 3 4 2	0.02	50	PAN STE06 STE06 WAT PAN PAN PAN STE06 WAT
1954 08 25.93 1954 08 25.98 1954 08 26.90 1954 08 26.90 1954 08 31.98 1954 09 01.89 1954 09 04.90 1954 09 05.90 1954 09 20.84	11 : 10.0: 11.5: 11.7 P 11.3 N 11.9 N 12.2 N 12 : 12 :	76.0 L 15.0 L 76.0 L 15.0 A 15.0 L 15.0 L 15.0 L 10.0 R 15.0 R	140 2 30 3 140 2.5 140 2 30 3 30 30 40	3 3 4 2 2	0.02	50	PAN STE06 STE06 WAT PAN PAN PAN STE06 WAT
1954 08 25.98 1954 08 25.98 1954 08 26.90 1954 08 26.90 1954 08 31.98 1954 09 01.89 1954 09 04.90 1954 09 05.90	11 : 10.0: 11.5: 11.7 P 11.3 N 11.9 N 12.2 N 12 : 12 :	76.0 L 15.0 L 76.0 L 15.0 A 15.0 L 15.0 L 15.0 L 10.0 R 15.0 R	140 2 30 3 140 2.5 140 2 30 3 30 30 40	3 3 4 2 2	0.02	50	PAN STE06 STE06 WAT PAN PAN PAN STE06 WAT
1954 08 25.93 1954 08 25.98 1954 08 26.90 1954 08 26.90 1954 08 31.98 1954 09 01.89 1954 09 04.90 1954 09 05.90 1954 09 20.84 Abell (1954 X =	11 : 10.0: 11.5: 11.7 P 11.3 N 11.9 N 12.2 N 12 : 12 : 12 :	76.0 L 76.0 L 76.0 L 15.0 A 15.0 L 15.0 L 15.0 L 15.0 R 76.0 L	140 2 30 3 140 2.5 140 2 30 3 30 40 140 2	3 3 4 2 2 3			PAN STE06 STE06 WAT PAN PAN PAN STE06 WAT STE06
1954 08 25.93 1954 08 25.98 1954 08 26.90 1954 08 26.90 1954 08 31.98 1954 09 01.89 1954 09 04.90 1954 09 05.90 1954 09 20.84 Abell (1954 X =	11 : 10.0: 11.5: 11.7 P 11.3 N 11.9 N 12.2 N 12 : 12 : 12 : 12 : 12 : 12 : 12 : 1	76.0 L 76.0 L 76.0 L 15.0 A 15.0 L 15.0 L 15.0 L 10.0 R 15.0 R 76.0 L	140 2 30 3 140 2.5 140 2 30 3 30 40 140 2 PWR COMA	3 3 4 2 2 2	0.02		PAN STE06 STE06 WAT PAN PAN STE06 WAT STE06
1954 08 25.93 1954 08 25.98 1954 08 26.90 1954 08 26.90 1954 08 31.98 1954 09 01.89 1954 09 04.90 1954 09 05.90 1954 09 20.84 Abell (1954 X =	11 : 10.0: 11.5: 11.7 P 11.3 N 11.9 N 12.2 N 12 : 12 : 12 :	76.0 L 76.0 L 76.0 L 15.0 A 4 15.0 L 15.0 L 15.0 R 76.0 L AP. T F/ 76.0 L	140 2 30 3 140 2.5 140 2 30 3 30 40 140 2 PWR COMA 140 3	3 3 4 2 2 2 3			PAN STE06 STE06 WAT PAN PAN STE06 WAT STE06
1954 08 25.93 1954 08 25.98 1954 08 26.90 1954 08 26.90 1954 08 31.98 1954 09 01.89 1954 09 04.90 1954 09 05.90 1954 09 20.84 Abell (1954 X =	11 : 10.0: 11.5: 11.7 P 11.3 N 11.9 N 12.2 N 12 : 12 : 12 : 12 : 12 : 12 : 12 : 1	76.0 L 76.0 L 76.0 L 15.0 A 15.0 L 15.0 L 15.0 L 10.0 R 15.0 R 76.0 L	140 2 30 3 140 2.5 140 2 30 3 30 40 140 2 PWR COMA	3 3 4 2 2 2			PAN STE06 STE06 WAT PAN PAN STE06 WAT STE06 OBS. STE06 STE06
1954 08 25.93 1954 08 25.98 1954 08 26.90 1954 08 26.90 1954 08 31.98 1954 09 01.89 1954 09 04.90 1954 09 05.90 1954 09 20.84 Abell (1954 X = DATE (UT) 1954 02 23.83 1954 02 25.94	11 : 10.0: 11.5: 11.7 P 11.3 N 11.9 N 12.2 N 12 : 12 : 12 : 12 : 12 : 12 : 12 : 1	76.0 L 76.0 L 76.0 L 15.0 A 4 15.0 L 15.0 L 15.0 R 76.0 L AP. T F/ 76.0 L 7.0 R	140 2 30 3 140 2.5 140 2 30 3 30 40 140 2 PWR COMA 140 3	3 3 4 2 2 2 3			PAN STE06 STE06 WAT PAN PAN STE06 WAT STE06
1954 08 25.98 1954 08 25.98 1954 08 26.90 1954 08 26.90 1954 08 31.98 1954 09 01.89 1954 09 04.90 1954 09 05.90 1954 09 20.84 Abell (1954 X = DATE (UT) 1954 02 23.83 1954 02 25.94 1954 02 26.85	11 : 10.0: 11.5: 11.7 P 11.3 N 11.9 N 12.2 N 12 : 12 : 12 : 12 : 12 : 12 : 12 : 1	76.0 L 15.0 L 76.0 L 15.0 A 15.0 L 15.0 L 15.0 L 15.0 R 76.0 L AP. T F/ 76.0 L 7.0 R 76.0 L	140 2 30 3 140 2.5 140 2 30 3 30 40 140 2 PWR COMA 140 3 25 2 140	3 3 4 2 2 2 3			PAN STE06 STE06 WAT PAN PAN STE06 WAT STE06 OBS. STE06 STE06
1954 08 25.98 1954 08 25.98 1954 08 26.90 1954 08 26.90 1954 08 31.98 1954 09 01.89 1954 09 04.90 1954 09 05.90 1954 09 20.84 Abell (1954 X = DATE (UT) 1954 02 23.83 1954 02 25.94 1954 02 26.85 1954 03 07.97	11 : 10.0: 11.5: 11.7 P 11.3 N 11.9 N 12.2 N 12 : 12 : 12 : 12 : 12 : 12 : 12 : 1	76.0 L 76.0 L 76.0 L 15.0 A 4 15.0 L 15.0 L 15.0 L 10.0 R 15.0 R 76.0 L 76.0 L 76.0 L 76.0 L 76.0 L	140 2 30 3 140 2.5 140 2 30 3 30 40 140 2 PWR COMA 140 3 25 2 140 68	3 3 4 2 2 3 DC 4 3			PAN STE06 STE06 WAT PAN PAN STE06 WAT STE06 STE06 STE06 STE06 CLA02
1954 08 25.98 1954 08 25.98 1954 08 26.90 1954 08 26.90 1954 08 31.98 1954 09 01.89 1954 09 04.90 1954 09 05.90 1954 09 20.84 Abell (1954 X = DATE (UT) 1954 02 23.83 1954 02 25.94 1954 02 26.85 1954 03 07.97 1954 03 23.80	11 : 10.0: 11.5: 11.7 P 11.3 N 11.9 N 12.2 N 12 : 12 : 12 : 12 : 12 : 12 : 12 : 1	76.0 L 76.0 L 76.0 L 15.0 A 4 15.0 L 15.0 L 15.0 L 10.0 R 15.0 R 76.0 L 76.0 L 76.0 L 22.0 L 8 10.0 R	140 2 30 3 140 2.5 140 2 30 3 30 30 40 2 PWR COMA 140 3 25 2 140 68 30 2.5	3 3 4 2 2 2 3 DC 4 3			PAN STE06 STE06 WAT PAN PAN STE06 WAT STE06 STE06 STE06 CLA02 ALC
1954 08 25.98 1954 08 25.98 1954 08 26.90 1954 08 26.90 1954 08 31.98 1954 09 01.89 1954 09 04.90 1954 09 05.90 1954 09 20.84 Abell (1954 X = DATE (UT) 1954 02 23.83 1954 02 25.94 1954 02 26.85 1954 03 07.97	11 : 10.0: 11.5: 11.7 P 11.3 N 11.9 N 12.2 N 12 : 12 : 12 : 12 : 12 : 12 : 12 : 1	76.0 L 76.0 L 76.0 L 15.0 A 4 15.0 L 15.0 L 15.0 L 10.0 R 15.0 R 76.0 L 76.0 L 76.0 L 76.0 L 76.0 L	140 2 30 3 140 2.5 140 2 30 3 30 40 140 2 PWR COMA 140 3 25 2 140 68	3 3 4 2 2 3 DC 4 3			PAN STE06 STE06 WAT PAN PAN STE06 WAT STE06 STE06 STE06 STE06 CLA02

Abell (1954 X = 1953g) Cont.

	/ ***	\		_				_,						
DATE			MAG.		. MM	AP.	T]	F/	PWR	COMA	DC	TAIL		OBS.
		28.87	9.3			76.0			140	2.5	7	0.1	50	STE06
		28.87	9.3			13.0			80					PAN
		31.80	9.5		S	10.0			30	6	4	0.05	50	ALC
		01.87	9.6			13.0	R		80	2.5	2			PAN
		04.90	9.0	X		7.0	R		30					ST001
1954	04	04.94	9.5	:		13.0	R		80	3				PAN
1954	04	07.00	8.8		S	5.0	R		16					MERO2
1954	04	07.88	9.2		S	15.0			38	3				HEN
		10.91	9.0			15.0			38	4	3			HEN
		13.15	9.0	•		13.0			80	4	4	0.17	360	
		19.88	9.0			13.0			80	5	5	0.17	500	PAN
		20.90	8.7	x		7.0			30	4	,			STO01
		21.91	9.0			13.0			80	3	3			
		25.90	8.2		c	5.0			7	J				PAN
		26.87	8.4							,	7	0 10	260	WAT
		26.90			o	15.0			38	6	5	0.13		HEN
			8.0	a		5.0			7	_	7	0.05	60	WAT
		26.90	8.2			7.0			30	6				STO01
		26.93	7.5		_	5.0			25	4	3	0.14		MERO1
		27.90	8.0			5.0			7			0.1	60	WAT
		28.90	8.0		S	5.0			7		7			WAT
		04.94	7.0:			15.0			38	6	5			HEN
		07.89	7.3			5.0	R		25	5	3			MER01
		18.90	8.4	В	S	10.0	R		30	7	4	0.13	40	ALC
1954	05	30.00	7.3	В	S	5.0	В		7					WAT
1954	06	05.00	7.2	В	S	10.0	R		30					WAT
1954	06	22.30	8.9	D	S	32.0			48	2.5	7			JON
1954	06	23.29				32.0			48	3	6			JON
		23.29	7.7	D	S	5.0			7	J	J			JON
		26.28	7.6			5.0			7					JON
		01.29	, , ,	_	-		L		86	2	6	0.04	120	JON
		01.29	7.5	R	S		R		7	2	U	0.04	120	
		02.29	6.9				R		7					JON
1954			6.7				R		7					JON
1954			6.6			5.0	R		7					JON
1954			6.9								-			JON
		08.28	0.9	ע	5	-	R		23		7			JON
		08.28	6 0	ъ	0	32.0			86		5	0.1	130	
			6.9			5.0			7					JON
		23.31	6.4			5.0			7					JON
		24.30	6.6	D	S	5.0			7					JON
		27.31				32.0			48	3.5	7			JON
		27.31	6.2			5.0			7					JON
		29.30	6.2			5.0			7					JON
		09.33	8.5			7.0	R		23					JON
		18.33	7.6	D	S	5.0	R		7					JON
		21.35	8.9	D	S	7.0	R		23					JON
1954	80	25.35	7.9	D	S	7.0	R		23			0.2	100	JON
1954	80	29.34	7.8			7.0			23			-		JON
		30.34				32.0			48	3	7	0.07	135	JON
		30.34	7.8	D	S	5.0			7	-	•	3.07		JON
		01.36	7.6			5.0			7					JON
		07.70	9.9			7.0			23					JON
		19.37	10.2			32.0				2	2			
		23.39	10.2						48 40	2	3			JON
1 フノ4	UJ	43.37	14.9	П	Ð	32.0	Tr.		48	1.5	4			JON

Abel1	(1954	X	=	1953	g)	Co	nt.
DATE ((IIT)			MAG.	R	мм	AP.

	••				AP. 7.0		PWR 23	COMA 3	DC	TAIL	OBS. JON
1954	10 01.39	10.6	H	S	32.0	L	48	2	3		JON
1954	10 15.44	11.6	H	S	20.0	L	54	2	2		JON
1954	10 24.48	11.8	H	S	20.0	L	54	1	3		JON

Kresák-Peltier (1954 XII = 1954d)

DATE	(UT)	MAG. R	MM	AP.	T F/	PWR	COMA	DC	TAIL	PA	OBS.
1954	07 03.90	9:		5.0	R	15					WAT
1954	07 04.90			15.0	R 12	60	15	2			\mathtt{WAT}
1954	07 22.32			32.0	L	86	3	4			JON
1954	07 22.32	8.0 V	S	5.0	R						JON
1954	07 23.34	8.0 V	S	5.0	R						JON
	07 23.34			32.0	L	86	3	4			JON
1954	07 24.35	7.8 V	S	5.0	R						JON
1954		7.8 V	S	5.0	R			5			JON
1954		7.6 V	S	5.0	R						JON
1954	07 29.35			32.0	L	48	3	4			JON
1954	08 09.32	9.1 D	S	7.5	R	23	2	4			JON
1954	08 21.31	8.3 D	S	7.5	R	23	2	5			JON
1954	08 28.74	8.3 D	S	7.5	R	23					JON
1954	08 28.74			32.0	L	48	2	7			JON
1954	09 07.73	8.7 D	S	5.0	R						JON
	09 07.73			32.0	L	86		5			JON
	09 24.70	8.4 V	S	7.5	R	23					JON
1954	09 25.70	8.1 V	S	7.5	R	23	3	5			JON
1954	10 07.69			32.0	L	48	2	4			JON
	10 07.69	9.0 V	S	7.5	R	23					JON

Kohler (1977 XIV = 1977m)

DATE (UT)	MAG. R MM	AP. TF/	PWR COMA	DC TAIL	PA OBS.
1977 11 02.77	7.0 J S	5.0 B 4	7		MIL02
1977 11 03.77					MIL02

Bradfield (1979 X = 19791)

DATE (UT) MAG.	R MM	AP.	T	F/	PWR	COMA	DC	TAIL	PA	OBS.
1980 02	12.77 8.7	T S	15.0	L	6	22	7	2		0	MIL02
1980 03	04.88 10.5	V	26.0	L		80	3.5	1			HUR
1980 03	09.83 11.3	V	26.0	L		80	3	3			HUR
1980 03	13.88 12.4	V	26.0	L		80	1.4	2			HUR

Bradfield (1980 XV = 1980t)

DATE	(UT)	MAG.	R	MM	AP.	T	F/	PWR	COMA	DC	TAIL	PA	OBS.
1981	01 13.09	4.5	A	S	8.0	В		11	2.0	6	2.0	35	SPR
1981	01 14.09	5.0	Α	S	8.0	В		11	2.5	6	1.0	30	SPR
	01 15.10	5.1	A	S	8.0	В		11	2.0	6	0.75	30	SPR
	01 17.11	5.8	A	S	8.0	В		11	2.0	6	0.50	30	SPR

P/Enc	cke	(1954	IX =	195	3 f	=	1980	XX	K)						
DATE	(111	')	MAC	3. R	MM	ſ	AP.	т	F/	PWR	COMA	DC	TAIL	PA	OBS.
		22.29								48	1.5	5			JON
		22.29	q	.6 V	S		7.5			23		•			JON
1954		23.29		.6 V			7.5			23					JON
1954		23.29	9.	. U V	5		32.0			86	2	3			JON-
			0	0 11			7.5			23	2	,			JON
1954		27.30	9.	.8 V	5						2	3			JON
		27.30	10	_			32.0	ь		86	2	0			
1980		07.97		: P			10.0	_	4	00	3	U			HEN
1980		12.91	10				26.0			80	2.5				HUR
1980		19.15	10				20.0			40	7	1			SHA02
1980		20.03	10				20.0			40	9	1			SHA02
1980		28.97		.0:			20.0			40	12	1	0.17	200	
1980		29.76	9.				20.0			40	9	2			SHA02
1980	10	29.76		.8			8.0			10	18	1			SHA02
1980	10	30.22	8.	.9:			31.0	L	5	60	2	4			PAN
1980	10	30.76	7.	.2			8.0	В		10	10	2			SHA02
1980	11	01.11	7.	.6			8.0	В		10	10	1			SHA02
1980	11	01.11	8.	.5			15.0	L		33	5	2			SHA02
1980	11	02.14	8.				8.0	В		10					SHA02
1980	11	02.14	9.				15.0			33	6	3			SHA02
1980		03.15	8.				8.0			10	8	2			SHA02
		10.22	7.				8.0			10	5	3/			SHA02
1980		12.23	8.				8.0			10	5	5			SHA02
		12.23	7.				8.0			15	6	_			PAN
		14.20		.5 K	S		5.0			7	10				MIL02
1700		14.20	0.				J.0	_		•					
P/Tut	-t1e	-Giaco	bini-	-Kre	sak	(1951	IV	7 =	1951 f	:)				
-,			, , , , , , , ,		<i>-</i>	•	-,,-								
DATE	(UT	·)	MAC	3. R	MM	Ι.	AP.	T	F/	PWR	COMA	DC	TAIL	PA	OBS.
1951	04	25.89	10	P			15.0	Α	4		7	3			WAT
1951	04	25.92	10	.5:			15.0	R		60	1				GRA
1951	04	27.90	9.	.8			14.0	R		33	3				LIN01
1951	04	28.90	9.	.8			14.0	R		33	3				WAT
1951	04	28.90	10	: B			76.0	L		150	4	3			STE06
1951	04	29.90	10	:	S		10.0			30	7	2			ALC
		29.94	10	: B	,		25.0			40	8	2			ACF
		02.92		.3 E			32.0			65	5	2			MERO2
		02.92		.3:	S		10.0			30	7.5	2			ALC
		10.90	11	:	_		32.0			120	3	3			MERO2
		11.94		.0 E			10.0			30	8	3			ALC
		22.94	11		, 3		10.0			30	7	2			ALC
		03.95		•0 •3:			10.0			30	7	2			ALC
		04.00								230	4.5	2			MERO2
			11				32.0				8.5	2			ALC
		06.00	11				10.0			30					MERO2
		08.00		.5:			32.0			230	3.5	2 2			
1 4 2 1	V6	09.00	ΤŢ	.7:			10.0	K		30	7	2			ALC
D/m	mm - 1	1 (19	072 17	_ 1	077	ر _ ر									
r / 16	πbe 1	T T (T)	714 V	- 1	.712	a)									

DATE	(UT)	MAG.	R	MM	AP.	T	F/	PWR	COMA	DC	TAIL	PA	OBS.
1972	04 09.54	12.5	K	В	20.3	L		38	3	2			BOE
1972	04 10.54	12.5	K	В	20.3	L		38	3	2			BOE
1972	04 11.52	12.4	K	В	20.3	L		38	3	2			BOE
1972	04 12.51	12.3	K	В	20.3	L		38	3	3			BOE
1972	04 13.52	12.3	K	В	20.3	L		38	3	3			BOE

P/Tempel 1 (1972	V =	1972a)	Cont.
--------------	------	-----	--------	-------

-, -cpc - (-)		-, -0			
1972 04 17.57 1972 04 19.58 1972 05 02.62	12.2 K B 12.1 K B 12.1 K B 12.0 K B 11.7 K B 11.6 K B	20.3 L 20.3 L 20.3 L 20.3 L 20.3 L 20.3 L	38 3 38 3 38 3	3 3 3 3	PA OBS. BOE BOE BOE BOE BOE BOE
P/Perrine-Mrkos	s (1955 VII	= 1955i)			
DATE (UT) 1955 10 28.20 1955 10 29.20 P/Borrelly (198	10.1 P	AP. T F/ 10.0 R 15.0 A 4	PWR COMA 30 5 2	DC TAIL 3 4	PA OBS. ALC WAT
DATE (UT) 1981 01 25.80 1981 01 30.77 1981 02 05.77 1981 02 10.76 1981 02 28.76	9.8 S B 9.9 S B 9.6 B B 9.6 B B	AP. T F/ 32.0 L 9	PWR COMA 70 2.3 60 2.5 60 2.4 45 2.3 45 1.5	4 5 4 4 4 1.0	PA OBS. MORO2 MORO2 MORO2 MORO2 50 MORO2
1981 03 13.79 1981 03 20.80 1981 04 01.80 P/Kopff (1951 V	10.5 B B 10.7 B B	32.0 L 9	45 1.6 45 1.2 45 1.0	5 1.0 5 0.4	55 MORO2
DATE (UT) 1951 08 19.30 1951 09 21.30	MAG. R MM 12.2 V S 11.3 V S 11.4 V S 10.6 V S	AP. T F/ 14.0 R 14.0 R 32.0 L 14.0 R 14.0 R	PWR COMA 42 2 42 1.5 86 3.5 42 42 34 3.5	3 4	PA OBS. JON JON JON JON JON JON JON
P/Giacobini-Zin	ner (1972 V	I = 1972d)			
DATE (UT) 1972 06 16.83 1972 06 17.89 1972 06 18.88 1972 06 19.88 1972 06 20.80 1972 06 21.82 1972 06 22.80 1972 06 23.79 1972 06 24.83 1972 07 01.83 1972 07 02.83 1972 07 03.83 1972 07 04.85	MAG. R MM 10.5 K B 10.5 K B 10.4 K B 10.4 K B 10.3 K B 10.3 K B 10.2 K B 10.2 K B 10.2 K B 10.0 K B 10.0 K B 10.0 K B	AP. T F/ 20.3 L	PWR COMA 38 4 38 5 38 5 38 5 38 5 38 5 38 5 38 5 38 5	DC TAIL 5 6 6 6 0.15 6 0.15 7 0.15 7 0.13 7 ? 6 6 6	PA OBS. BOE
1972 09 08.84	11.0 K B	20.3 L	38 4	5 ?	BOE

1981 12 17.13 11.9 A S

P/Giacobini-Zinner (1972 VI = 1972d) Cont.

1,014cobini bin	1101 (1)11	,,_u,	001100		
DATE (UT) 1972 09 14.83 1972 09 17.82 1972 09 18.85 1972 09 19.82 1972 09 20.83 1972 09 21.86	MAG. R MM 11.5 K B 12.0 K B 12.0 K B 12.1 K B 12.2 K B 12.3 K B	AP. T F/ 20.3 L	PWR COMA 38 4 38 4 38 4 38 4 38 4 38 4	DC TAIL 5 ? 5 ? 4 ? 4 ?	PA OBS. BOE BOE BOE BOE BOE
P/Wolf-Harringt	on (1952 II	= 1951k)			
DATE (UT) 1951 11 21.80 1951 12 02.80 1951 12 02.90 1951 12 21.78 1951 12 29.83 1952 01 16.85 1952 01 17.85 1952 01 18.85 1952 01 19.34	MAG. R MM 12.5 P 12 : 11.3 12.3: 12 : 12.5: 12.5: 12.5:	AP. T F/ 18.0 R 76.0 L 18.0 R 76.0 L 76.0 L 76.0 L 76.0 L 76.0 L	80 0.9 150 1 80 2 150 1 150 1 150 1	2 4 3 4 0.05 0.05 0.05	PA OBS. MERO2 KEL STE06 KEL 60 STE06 55 STE06 55 STE06 KEL
P/Swift-Gehrels	(1981j)				
DATE (UT) 1981 10 04.23 1981 10 17.22 1981 10 21.23 1981 10 25.24 1981 10 30.24 1981 11 04.25 1981 11 05.12 1981 11 06.18 1981 11 21.81 1981 11 23.02 1981 11 24.01 1981 11 24.05 1981 11 24.05 1981 11 24.20 1981 11 25.05 1981 11 26.15	MAG. R MM 12.5:A S 12.1 A S 12.5 A S 12.3 A S 11.7 A S 11.8 S 11.9 A S 11.1 A S 10.9 A S 11.3 A S 10.6 A S 10.9 A S	AP. T F/ 20.0 C 10 32.0 L 7 20.0 C 10 32.0 L 7 25.0 L 5 20.0 C 10 25.0 L 5 25.4 L 4 32.0 L 6 32.0 L 6 25.0 L 7 25.0 L 7 25.0 L 7 25.0 L 5	PWR COMA 125 1.0 143 1.5 143 1.0 125 1.5 71 2.0 75 2.0 125 1.5 75 1.5 79 2 68 2.0 68 2.1 68 2.8 75 2.25 68 2.8 68 2.1	2 2 2 2 3 2 2 2 2 2 2 2	PA OBS. SPR
1981 11 26.18 1981 11 27.16 1981 11 28.17 1981 11 29.27 1981 11 30.17 1981 12 01.00 1981 12 01.02 1981 12 01.87 1981 12 03.00 1981 12 03.15 1981 12 06.16 1981 12 13.12 1981 12 13.97 1981 12 13.97 1981 12 17.04	11.5 A S 11.0 A S 10.9 A S 10.8 A S 10.8 A S 10.8 A S 11.2 J S 10.8 A S 11.1 A S 11.7 A S 11.7 A S 11.3 A S 10.7 A S 10.7 A S	20.0 C 10 32.0 L 7 20.0 C 10 15.5 L 6 20.0 C 10 32.0 L 6 25.0 L 7 15.5 L 6 25.0 L 7 25.0 L 5 20.0 C 10 20.0 C 10 32.0 L 6 25.0 L 7	125 & 1.75 71	3 3 3 1 3 2/ 2 7 1 2 2 2 3 3 ? 2 2	SPR SPR SPR FUL SPR BOR MOR FUL MOR SPR SPR SPR SPR 125 BOR MOR MOR SPR

20.0 C 10 113

1.0

2

SPR

P/Swift-Gehrels (1981j) Cont.

DATE	(U)	(1)	MAG.	R	MM	AP.	T	F/	PWR	COMA	DC	TAIL	PA	OBS.
1981	12	19.97	10.6	A	S	25.0	L	7	68	2.9	2/			MOR
1981	12	19.98	10.1	Α	S	32.0	L	6	68	2.3	2/			BOR
1981	12	20.13	12.2	Α	S	20.0	С	10	113	1.25	2			SPR
1981	12	20.98	10.1	Α	S	32.0	L	6	68	2.7	2	?	225	BOR
1981	12	20.98	10.4	Α	S	25.0	L	7	68	3.2	2			MOR
1981	12	20.98			S	8.0	В		20	& 5				BOR
1981	12	22.14	12.0	Α	S	25.0	L	5	38	1.25	2			SPR
1981	12	24.16	9.8	Α	S	8.0	В		20	4	2			MOR
1981		24.95	10.0	Α	S	25.0	L	7	68	3.0	2			MOR
1981		25.21	11.9	Α	S	25.0	L	5	38	1.25	3			SPR
1981	12	26.00	9.9	Α	S	32.0	L	6	68	2.7	2/			BOR
1981	12	26.05	10.0	Α	S	25.0	L	7	68	3.4	1/			MOR
1981	12	26.06	9.8	Α	S	8.0	В		20	4	1			MOR
1981	12	27.21	12.5	Α	S	20.0	С	10	65	1.0	2			SPR
1981	12	30.00	10.1	Α	S	32.0	L	6	68	2.4	2/			BOR
1981	12	30.04	10.3	A	S	25.0	L	7	68	2.8	2			MOR
1981	12	30.99	10.0	Α	S	25.0	L	7	68	2.9	2			MOR
1981		31.00	9.9	Α	S	32.0	L	6	68	2.6	2			BOR
1981	12	31.20	12.1	A		20.0	С	10	65	1.0	2			SPR
1982	01	01.20	12.2	Α		20.0	С	10	65	1.0	2			SPR
1982	01	12.98	10.4	Α	S	25.0	L	7	68	3.4	1/			MOR
1982	01	16.00	10.6	Α	S	25.0	L	7	103	2.4	1			MO R
1982	01	17.98	10.7	A	S	25.0	L	7	103	3.0	1			MOR
1982	01	18.99	10.8	Α	S	25.0	L	7	103	2.6	0/			MOR
1982	01	21.99	10.9	Α	S	25.0	L	7	103	2.6	0/			MO R
1982		25.02	11.4	Α	S	25.0	L	7	103	2.0	0/			MO R
1982	01	27.01	11.2	A	S	25.0	L	7	103	3	0			MOR
1982	01	27.01	11.2	A	S	25.0	L	7	168	3	0			MOR.
1982	01	28.01	11.5	A	S	25.0	L	7	103	3	0			MOR

P/Schaumasse (1952 III = 19511)

DATE	• •	MAG. R	MM	AP.	T F/	PWR	COMA	DC	TAIL	PA	
1951	12 21.90	10.3:		76.0	L	150	2	7			STE06
1951	12 21.92	10.6 X		30.0	R	240	1.5	5			MERO2
1951	12 29.90	9.9		10.0	R	30	6	6	0.25	80	ALC
1951	12 29.90	9.8	S	30.0	R	230	4	7	0.1	160	MERO2
1951	12 29.90	9.4	S	5.0	R	16	7				MER02
1952	01 07.87	9.6		10.0	R	30	5	5			ALC
1952	01 15.80	8.5		15.0	R	60	7	6			GAY
1952	01 15.80	7.8 B		23.0	L	55	7	5			GAY
1952	01 15.82	7.9 B	S	10.0	R	30	9	7	0.2	75	ALC
1952	01 17.79	8.3 B		10.0	R	30	11	5	0.25	55	ALC
1952	01 17.80	8.4 B		23.0	L	55	5.5				GAY
1952	01 17.80	8.2 B		32.0	R	62	8	3			MERO2
1952	01 17.94	8.0 B		4.0	R	17					TAY02
1952	01 19.79	7.8 B	S	10.0	R	30	10	7	0.33	75	ALC
1952	01 19.80	7.8 B		5.0	R	6					GAY .
1952	01 26.80	8.0 B		23.0	L	55	10	5			GAY
1952	01 27.80	8.0 B		5.0	R	6					GAY
1952	01 28.90	6.5 D	S	5.0	R	7					STE06
1952	01 29.90	6.4 D	S	5.0	R	7					STE06
1952	01 31.80	6.5		5.0	R	6	6	4			DAV
-	01 31.90		S	5.0	В	7	17				MERO 2

DATE (UT)

P/Schaumasse (1952 III = 19511) Cont.

ייי -	(UT)	MAG. R MM	AP. T F/	PWR	COMA	DC	TAIL	PA OBS.
	01 31.90	6.4 S	5.0 R	7	COLIA	Ъ	121211	STE06
	02 01.84	5.1	2.0 B	4				TAY02
	02 01.04	4.8 M	22.0 L	67				CLA02
	02 02.80	7.5 B	5.0 R	6				GAY
	02 03.80	6.6 D	7.0 R	6	7			GAY
	02 03.80	6.3 X	5.0 R	6	15			DAV
	02 12.29	7.0 B	5.0 R	6				GAY
	02 12.95	6.5 V S	25.0 L	72		4		COL01
	02 15.85	6.5 V S	5.0 R	16	19	7		MERO2
	02 13.90	6.0 V	6.0 R	80	16	5		DAV
	02 20.77	6.7 B	5.0 R	6	10	5		GAY
	02 20.80	6.6 B S	5.0 R	7		,		STE06
	02 21.78	6.7 B	5.0 R	6	13			GAY
	02 22.88	6.7 B	5.0 R	6	12			GAY
	02 22.92	6.7 B S	5.0 R	7	12			STE06
	02 25.85	5.8 X	13.0 R	33	6.5	4		FUL01
					0.5	7		STE06
	02 25.90	6.8 B S	5.0 R 5.0 R	7 6	16	5		DAV
	02 27.82	6.4 V	5.0 R	6	12	,		GAY
	03 02.88	6.7 B		55	6			GAY
	03 04.90	8.1 B	23.0 L 9.0 R	25	7 . 5	7		SOP
	03 14.80	7.7 7.5 B	5.0 R	6	12	′		GAY
	03 14.82	· ·	5.0 R	6	18	6		DAV
	03 14.86	6.6 V		6	12			GAY
	03 15.83	7.5 B	5.0 R	7	15			STE06
	03 15.90	7.0 B S	5.0 R		13			GAY
	03 17.86	8.0 B	5.0 R	6 7				STE06
	03 17.99	7.2 B S	5.0 R		10	2		MERO2
	03 18.00	7.7 B S	5.0 R	16	10	3		DAV
	03 20.86	7.1 V	5.0 R	6	17 6	5 5		SOP
	03 22.80	8.2	9.0 R	25	ס	3		GAY
	03 22.82	8.0 B	5.0 R	6	10			DAV
	03 22.84	7.1 V	5.0 R	6 7	18	4		STE06
	03 22.88	7.5 B S	5.0 R		20	2		MERO2
	03 22.90	7.0 D S	4.0 R	6	20	3 2		MERO2
	03 24.90	7.5	5.0 R	6	20 7	2		GAY
	03 25.88	7.5 B	23.0 L	55		4		
	03 25.90	8.2 D	5.0 R	6	TO	6		FUL01
	03 26.87	8.7 B	5.0 R	6	10	7		GAY DAV
	03 26.88	7.3 X	4.0 R	6	15	7		
	03 27.86	6.8 B	5.0 R	6	8.5	,		GAY
	03 27.90	7.8 B S	5.0 R	16	15	6		MERO2
	04 13.88	8.7 B	5.0 R	6	-		•	GAY
	04 13.90	9.0 D S	32.0 R	62	5			MERO2
	04 16.89	8.8 B	23.0 L	55	6			GAY
	04 17.88	8.7 B	23.0 L	55	3			GAY
	04 24.00	9.5:B S	5.0 R	16				MERO2
	04 24.95	8.8:B	23.0 L	55		^		GAY
1952	05 17.00	10 :	23.0 L	55		3		GAY
P/Ke	arns-Kwee	(1981h)						

MAG. R MM AP. T F/ PWR COMA DC TAIL PA OBS.

2

0.25 2

MORO2

MOR02

1981 12 07.97 14.2 A B 32.0 L 9 70 0.3

1981 12 08.95 14.1 A B 32.0 L 9 96

P/Kearns-Kwee (1981h) Cont.

DATE	(UT)	MAG.	R MM	AP.	T	F/	PWR	COMA	DC	TAIL	PA	OBS.
1981	12 09.95	14.0	АВ	32.0	L	9	96	0.25	1			MORO2
1981	12 17.95	14.0	АВ	32.0	L	9	96		1			MOR02
1981	12 18.96	13.9	A B	32.0	L	9	96	0.20	2			MORO2
1981	12 24.00	13.9	АВ	32.0	L	9	70		2			MOR02
1981	12 28.99	14.0	АВ	32.0	L	9	70		2			MORO2
1981	12 29.96	14.0	A S	32.0	L	9	70	0.20	2			MORO2

P/Pons-Brooks (1954 VII = 1953c)

DATE (UT)	MAG. R MM	AP. TF/	PWR	COMA	DC	TAIL	PA OBS.
1953 07 05.00	14.5:P	20.0 2		0.5			MERO2
1953 08 11.00	15.3:P	20.0 2					MERO 2
1953 09 12.91	13.5:	76.0 L	140	1.5	2		STE06
1953 09 16.90	13 :	76.0 L	150	1.5			STE06
1953 09 18.00	12.8 P	20.0 2		1	3		MERO2

P/Tuttle (1980 XIII = 1980h)

DATE	(UT)	MAC	R MM	A D	m	F/	DLID	COMA	DC	TT A TT	77) A	ORC
1980	10 09.9		:P	AP. 10.0	T	4	PWR	COMA 3.5	2	TAIL	FA	OBS. HEN
1980	10 18.1				L	5	60		3			PAN
1980	10 19.1				R)	40	5 5	0			SHA02
1980	10 28.9			20.0	R		40	6	1			
1980	10 20.9			20.0				4	1			SHA02
1980					R		40 40		1			SHA02
	-			20.0	R		40	8				SHA02
1980				20.0	R		40	5	1/			SHA02
1980	11 02.1			20.0	R		40	4	2/			SHA02
1980	11 03.1			20.0	R		40	5	3			SHA02
1980	11 10.1			8.0	В		10	7	3			SHA02
1980	11 10.1			20.0	R		40	6	3/			SHA02
1980	11 12.0			20.0	R		40	5	3			SHA02
1980	11 12.0			8.0	В	_	10		_			SHA02
1980	11 12.1			31.0	L	5	60	5	4			PAN
1980	11 12.2		S	8.0	R		40	4	5			RID
1980	11 18.1			8.0	В		10	5	4			SHA02
1980	11 18.1			20.0	R		40		5			SHA02
1980	11 25.2	-		8.0	В		10	5	4			SHA02
1980	11 28.1			20.0	R		40	6	5			SHA02
1980	11 28.1			8.0	В		10	5	4			SHA02
1980	12 01.2	7.3		8.0	В		15	8	3			PAN
1980	12 01.2	8.4		8.0	В		10	5	6/			SHA02
1980	12 01.2	8.8		20.0	R		40	5	5			SHA02
1980	12 02.6	7.9	V	4.5	R							JON
1980	12 03.2	3 7.7		8.0	В		10	5	5			SHA02
1980	12 03.2			20.0	R		40	6	5	0.25	210	SHA02
1980	12 03.2			8.0	В		15	7	2			PAN
1980	12 03.6			4.5	R		15					JON
1980	12 07.2			32.0	R		95	3	4			SHA02
1980	12 07.2			8.0	В		10	2	6/			SHA02
1980	12 07.20			8.0	В		15	8	3			PAN
1980	12 07.6		٧		R			•	_			JON
			*									

P/Schwassmann-Wachmann 1

DATE	(UT)	MAG.	R	MM	AP.	T	F/	PWR	COMA	DC	TAIL	PA	OBS.
1982	01 27.40	12.3	A	S	25.0	L	7	103	1.4	6			MO R
1982	01 29.37	12.5	A	S	25.0	L	7	103	0.9	6			MOR
1982	01 29.37	12.5	Α	S	25.0	L	7	168	1.0	4			MOR
1982	02 02.37	12.8	A	S	25.0	L	7	103	1.5	4			MOR

P/Stephan-Oterma (1980 X = 1980g)

DATE	(UT)	MAG. R MM	AP. TF/	PWR	COMA	DC TA	IL PA OBS.
1980	10 18.20	11.1 A	31.0 L 5	60	1.7	4	PAN
1980	10 29.01	10.2	20.0 R	40	3	2	SHA02
1980	11 01.15	10.5	20.0 R	40	2	4/	SHA02
1980	11 01.20	10.9 A	31.0 L 5	60	2	2	PAN
1980	11 02.11	10.5	20.0 R	40	2	5	SHA02
1980	11 03.11	10.5	20.0 R	40	2	5	SHA02
1980	11 03.22	10.6 A	31.0 L 5	60	2	4	PAN
1980	11 10.17	10.6	20.0 R	40	2.5	4	SHA02
1980	11 11.99	10.0	20.0 R	40	3	3	SHA02
1980	11 12.21	10.0 A	31.0 L 5	60	4		PAN
1981	01 10.17	9.7 A	20.0 L 10	65	3.5		SPR
1981	01 11.18	9.9 A	20.0 L 10	65	4.0		SPR
1981	01 12.17	9.6 A	20.0 L 10	65	3.5		SPR
1981	01 13.15	9.7 A	25.0 L 5	38	4.0		SPR
1981	01 14.16	9.7 A	25.0 L 5	38	4.5		SPR
1981	01 15.18	9.8 A	25.0 L 5	38	4.5		SPR
1981	01 16.14	9.9 A	25.0 L 5	38	4.5		SPR
1981	01 17.15	10.0 A	25.0 L 5	38	4.0		SPR
1981	01 24.13	10.3 A	25.0 L 5	38	4.5		SPR
1981	01 25.13	10.5 A	25.0 L 5	38	4.0		SPR
1981	01 27.16	10.6 A	20.0 L 10	65	4.0	3	SPR
1981	02 01.16	10.7 A	20.0 L 10	65	3.5	2	SPR
1981	02 02.15	10.8 A	25.0 L 5	38	3.5	2	SPR
1981	02 03.17	11.0 A	25.0 L 5	38	2.5	2	SPR

RECENT NEWS CONCERNING COMETS

On February 7, Kenneth S. Russell sent a telegram to the Central Bureau for Astronomical Telegrams from his Australian post with the U.K. Schmidt Telescope Unit, describing two cometary images which had been found by Marc Hartley. The interesting point was that both objects were on the same plate taken Feb. 5 with the 1.2-m Schmidt telescope, and a confirmation plate for both object was obtained on the following night. Designated comets Hartley 1982b (m, ~ 14) and 1982c (m, ~ 17), their seemingly-parallellike motion indicated a likely relationship between the two objects.

Subsequent observations confirmed that one of the two objects had ap-

parently split from the other, and S. Nakano of Sumoto, Japan, suggested the identification of this "double-comet" with the long-lost P/du Toit 2, not seen since its discovery apparition some 37 years ago. A close approach to Jupiter (0.34 AU) in late 1963 and strong non-gravitational forces helped to make this comet now appear almost two months away from its predicted perihelion date (cf. IAUC 3668).

"Object" 1982b has apparently faded to magnitude 17.5 by Feb. 17, while 1982c had remained fairly constant until this date, supporting a suggestion by Zdenek Sekanina, Jet Propulsion Laboratory, that the comet split probably at its last perihelion

RECENT NEWS CONCERNING COMETS (Cont.)

return in 1976 or 1977. The geometry of this return is such that a fairly close approach to the earth (0.3 AU during March-April) will make the two objects appear to draw closer together, while in fact they will be moving further apart; neither component should get brighter than magnitude 16, however.

Periodic comet Schwassmann-Wachmann 1 underwent another outburst (perhaps more than one) in January. In Japan, Dr. M. Huruhata found the comet at photovisual magnitude 12.3 on Jan. 16.87 UT, after having not been able to detect the object on Jan. 13. Yamamoto Circular No. 1968 (1982 Jan. 22) lists A. Nakamura and K. Ichikawa as having found the comet at total visual magnitude 12.1 to 12.3 on Jan. 19.8 (coma diameter 1.2' to 1.5'). Independent reports of discovery of this outburst were received at the Central Bureau for Astronomical Telegrams from Ed Barker of McDonald Observatory (Jan. 22, 23; magn. about 12); Alan Hale, Mt. Laguna, CA (magn. 12 on Jan. 23 and 25, diameter 1'); and from I. Ferrin, Universidad de Los Andes in Merida, Venezuela, who stated that A. Parravano, E. Guzman, and he found a fan-like coma of magn. 13.5 at 23:00 UT on Jan. 27. Charles Morris, Prospect Hill Observatory, suspected some spiral structure in P/Schwassmann -Wachmann 1 on Jan. 27.40, when he estimated total magn. 12.3 and coma diameter 1.4' with his 25-cm reflector at 103x; he found mag. 12.5 on Jan. 29.37 and 12.8 on Feb. 2.37.

P/Swift-Gehrels 1981 j is now fading after having gotten brighter than magn. 10 in December. The last observation received by press time was that by Morris on Jan. 28.01, when the object was extremely diffuse and difficult to see in his 25-cm reflector at magn. 11.5, coma dia. 3' and degree of condensation 0.

James Morgan, in Wisconsin, and Graham Keitch, in England, have reported detecting P/Kearns-Kwee 1981h in December with magnitude estimates of 13.5-14.0.

Jim Gibson recovered P/Väisälä 1 on plates taken Dec. 7 and 18 at Palomar with the 1.2-m Schmidt telescope. Designated comet 19811 (IAUC 3654), the object was stellar in appearance and of magn. 20.5.

Gibson also made the first comet recovery of 1982, as P/Grigg-Skjellerup was designated comet 1982a after having been located as a stellar object of magn. 19 on plates taken Jan. 15 and 16. This comet should be visible in amateur telescopes in the coming months, and an ephemeris is provided below.

Comet Bowell 1980b should be visible (low in the south for northern hemisphere observers) during the next few months, brightening to total visual magnitude 9 or 10. An extended ephemeris is on page 1.

--D.W.E.G. (2/19/82)

EPHEMERIS FOR P/COMET GRIGG-SKJELLERUP (1982a) - ELEMENTS FROM MPC 6193

Date 1982	04 (01 0)6 ^h 3	1. (1950 31.40	-09°	19.9	Delta 0.610	r 1.161	Elong. 88.9	m, 12.1
1982 1982 1982	04	11 0)6 4	39.22 48.59 59.57	-05	21.0 12.0 50.8	0.558	1.097	84.2	11.6
1982 1982 1982	04 2	21 0)7 1	12.32 27.03	-00	14.5 40.0	0.502	1.045	80.3	11.2
1982 1982	05 (01 0	7 4	3.97 3.51	+05	55.9 36.2	0.443	1.009	77.4	10,8
1982 1982	•••			26.10 52.33		42.2 11.7	0.390	0.991	76.0	10.4
1982 1982				22.83 58.06		56.4 40.0	0.350	0.993	76.8	10.2
1982 1982				37.99 21.69	-	58.9 27.7	0.335	1.015	80.6	10.2